# PreTeXt Authoring Quick Reference

Version 1.0, reviewed 2022-07-27 T. W. Judson and others??? GNU Free Document License, extend for your own use. For more details, see https://pretextbook.org/doc/guide/html/

# **PreTeXt Documents**

For an article

or a book

<?rml version="1.0" encoding="UTF-8"?> <pretext> <book> <title>Hello World!</title>

#### <chapter>

<title>My Great Chapter</title>
This is a PreTeXt document.
</chapter>

</book> </pretext>

## Structure of a PreTeXt Document

PreTeXt documents are structured and may contain divisions such as <chapter> (for books), <section>, <subsection>, and (paragraphs).

#### <section>

<title>Mandatory</title> First paragraph.

Second paragraph.</section>

Divisions may contain other divisions. Divisions require a <title>.

#### <section>

<title>Mandatory</title> <introduction> Introductory text. (Optional.) </introduction>

<subsection> <title>Mandatory</title> Subsection content.

#### </subsection>

<conclusion> Concluding text. (Optional.) </conclusion> </section>

## Blocks

Besides paragraphs () the most common object to include in a division, <remark>, <example>, <figure> and .

## Cross-References

Any element that you place a @xml:id on can become the target of a cross-reference. For example, suppose your source had <subsection xml:id="subsection-flowers">> and someplace else you wrote <xref ref="subsection-flowers" />.

### Mathematics in PreTeXt

Since PreTeXt has robust support for mathematical formulas. Inside the tags that delimit math environments, your code is basically  $IAT_{\rm E}X$  with the caveat that you must be careful with <, >, and & since they are special symbols for XML. When typing math in your PreTeXt code, use \lt for <, \gt for >, and \amp for &.

For inline math, wrap things in the <m> tag:  $a^2 + b^2 = c^2$  is produced by <m>a<sup>2</sup> + b<sup>2</sup> = c<sup>2</sup></m>.

We get displayed equations via the <me> and <me>. (to produce a numbered equation) tags. The code

### <me>

\frac{d}{dx} \int\_1^x \frac{1}{t}\, dt
</me>
<men xml:id="eqn-ftc">
 \int\_a^b f(x)\, dx = F(b) - F(a)
</men>

```
() mon
```

$$\frac{d}{dx} \int_{1}^{x} \frac{1}{t} dt$$
$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

For a collection of equations all aligned at a designated point, use <md> and <mrow> (<mdn> for numbered equations.). The code

<md>

<mrow>x \amp = r\cos\theta</mrow>
<mrow>y \amp = r\sin\theta</mrow>
</md>

produces

 $\begin{aligned} x &= r\cos\theta\\ y &= r\sin\theta. \end{aligned}$ 

Images, Figures, sidebyside

Images can be included using the 
</figure>
```