
The PreTeXt Guide

The PreTeXt Guide

Robert A. Beezer
University of Puget Sound

David Farmer
American Institute of Mathematics

Alex Jordan
Portland Community College

Mitchel T. Keller
Morningside College

March 11, 2024

©2013–2019 Robert A. Beezer, David Farmer, Alex Jordan, Mitchel T. Keller

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Preface

Introduction. This part is the place to begin if you are new to PreTeXt. Chapter 1 is the introduction, overview,
and philosophy. Then Chapter 2 intends to get you started quickly by showing how to set up a PreTeXt authoring
environment and converting a document to html and LATEX output formats. Notice that there are three parts which
target different roles: the Author’s Guide (Part II), the Publisher’s Guide (Part ??) and the Developer’s Guide (Part ??).

Author’s Guide. This guide will help you author a PreTeXt document. So it serves as a description of the PreTeXt
xml vocabulary, along with the mechanics of creating the source and common output formats. Chapter 3 is meant
to be a short overview of the majority of PreTeXt’s features, which can be skimmed to get a sense of PreTeXt’s
capabilities. Or it can be read quickly as you begin authoring and you can return as you need certain features. The
roughly parallel Chapter 4 is much more comprehensive and is the first place to go for details not addressed in the
overview. Note that the Author’s Guide is not concerned with publishing your document, which is described in the
Publisher’s Guide.

Basic Reference. This part provides a quick overview of the minimal syntax for a variety of key PreTeXt features.
Unlike the sample article, which is designed to demonstrate and stress test all aspects of PreTeXt, this guide will
illustrate only the key elements of some of the most universally-used features of the language. In many cases, in
addition to features not discussed, there may be alternative structures that are not given here.

Publisher’s Guide. Even if you intend to distribute your document with an open license, and you are both author
and publisher, it is still helpful and instructive to understand, and separate, the two different steps and roles. So visit
this part of the Guide to learn how you can present, distribute, and maintain what you have authored.

Developer’s Guide. This part provides advice, suggestions, and conventions for contributing to PreTeXt. For any-
thing not answered here please use the pretext-dev¹ Google Group. Make a membership request and it will be
processed quickly.

Appendices. In addition to the usual items you might expect in the back matter, such as an open license, glossary,
references, and an index, there are numerous more specialized additions, mostly describing the installation of, or
effective use of, various technical tools that are independent of PreTeXt (but useful or necessary).

¹groups.google.com/forum/#!forum/pretext-dev

iv

https://groups.google.com/forum/#!forum/pretext-dev

Contents

v

Part I

Introduction

1

Chapter 1

Why PreTeXt?

Welcome to “the Guide” for PreTeXt. You are likely eager to get started, but familiarizing yourself with this chapter
should save you a lot of time in the long run. We will try to keep it short and at the end of early chapters we will
guide you on where to go next. Not everything we say here will make sense on your first reading, so come back
after your first few trial runs. When you are ready to seek further help, or ask questions, please read the Welcome
to the PreTeXt Community in Appendix ??.

1.1 Philosophy

PreTeXt is a markup language, which means that you explicitly specify the logical parts of your document and not
how these parts should be displayed.

This is very liberating for an author, since it frees you to concentrate on capturing your ideas to share with others,
leaving the construction of the visual presentation to the software. As an example, you might specify the content
of the title of a chapter to be Further Experiments, but you will not be concerned if a 36 point sans-serif font in
black will be used for this title in the print version of your book, or a CSS class specifying 18 pixel height in blue is
used for a title in an online web version of your book. You can just trust that a reasonable choice has been made for
displaying a title of a chapter in a way that a reader will recognize it as a name for a chapter. (And if all that talk of
fonts was unfamiliar, all the more reason to trust the design to software.)

You are also freed from the technical details of presenting your ideas in the plethora of new formats available as
a consequence of the advances in computers (including tablets and smartphones) and networks (global and wireless).
Your output “just works” and the software keeps up with technical advances and the introduction of new formats,
while you concentrate on the content of your book (or article, or report, or proposal, or …).

If you have never used a markup language, it can be unfamiliar at first. Even if you have used a markup language
before (such as html, Markdown, or basic LATEX) you may need to make a few adjustments. Most word-processors
are WYSIWYG (“what you see is what you get”). That approach is likely very helpful if you are designing the front
page of a newspaper, but not if you are writing about the life-cycle of a salamander. In the old days, programs like
troff¹ and its predecessor, RUNOFF² (1964), implemented simple markup languages to allow early computers to do
limited text-formatting. Sometimes the old ways are the best ways.

PreTeXt is what is called an XML application or an XML vocabulary (I prefer the latter). That is, the source you
write is “marked up” as xml, with specific tags that describe the semantic structure of your document. Authoring
in xml might seem cumbersome at first, since some content will require more characters of markup than of content.
Much of this markup can be quickly produced with a modern text editor, but it can still be overwhelming. We believe
you will eventually appreciate the long-run economies, so keep an open mind. And if you are already familiar with
xml, realize we have been very careful to design this vocabulary with human authors foremost in our mind.

¹en.wikipedia.org/wiki/Troff
²en.wikipedia.org/wiki/TYPSET_and_RUNOFF

2

https://en.wikipedia.org/wiki/Troff
https://en.wikipedia.org/wiki/TYPSET_and_RUNOFF

1.2 ☙ Understanding Your Source ❧ 3

Principles. The creation, design, development, and maintenance of PreTeXt is guided by the following list of prin-
ciples. These will become more understandable as you become more familiar with authoring texts with PreTeXt and
should amplify some of the previous discussion.

List 1.1.1 PreTeXt Principles

1. PreTeXt is a markup language that captures the structure of textbooks and research papers.

2. PreTeXt is human-readable and human-writable.

3. PreTeXt documents serve as a single source which can be easily converted to multiple other formats,
current and future.

4. PreTeXt respects the good design practices which have been developed over the past centuries.

5. PreTeXt makes it easy for authors to implement features which are both common and reasonable.

6. PreTeXt supports online documents which make use of the full capabilities of the Web.

7. PreTeXt output is styled by selecting from a list of available templates, relieving the author of the
burden involved in micromanaging the output format.

8. PreTeXt is free: the software is available at no cost, with an open license. The use of PreTeXt does not
impose any constraints on documents prepared with the system.

9. PreTeXt is not a closed system: documents can be converted to LATEX and then developed using standard
LATEX tools.

10. PreTeXt recognizes that scholarly documents involve the interaction of authors, publishers, scholars,
curators, instructors, students, and readers, with each group having its own needs and goals.

11. PreTeXt recognizes the inherent value in producing material that is accessible to everyone.

1.2 Understanding Your Source

Almost all of your time authoring in PreTeXt will be spent editing your source files. We now briefly describe what
these files will look like and how to edit them.

File Format and Text Editors. Your source will be plain textASCII files, which you create and edit with any number
of text editors. Files can be saved with the .ptx extension, which might tell your text editor what sort of file you
are editing and will provide syntax highlighting and code completion, among other features. If your editor does not
recognize .ptx, then you can use the .xml extensionwhich has wider editor support (but with fewer PreTeXt-specific
features).

Popular text editors include Visual Studio Code, Sublime Text, vi, emacs, Notepad, Notepad++, Atom, TextWran-
gler, and BBEdit. But in particular, you should not use word processing programs like Word, LibreOffice, Google
Docs, WordPerfect, AbiWord, Pages, or similar programs. Sometimes these editors are known as a programmer’s
editor (though we will be doing no programming). Support for writing HTML sometimes translates directly to good
support for XML.

Visual Studio Code has support for PreTeXt documents via a free extension, and the editor is open source and
cross-platform (Windows, OS X, and Linux). The developers of PreTeXt have also had a very good experience with
Sublime Text, which is cross-platform, and can be used for free, though it has a very liberal paid license if you want
to avoid nagging.

There are XML editors, which might be too complex for authoring in PreTeXt. They do have some advantages
and XML Copy Editor is one that you might find useful.

1.2 ☙ Understanding Your Source ❧ 4

Some text editors (like VS Code) have spell checking extensions. More generally, recommendations for a spell
checker can be found in Section ??.

Structure of your Source. If you start to think about the structure of a document (like an article or book) you will
quickly realize that components are like blocks, stacked inside or next to other blocks. From the outside to inside,
a book will have a number of chapters (next to each other, but all inside the book), and each might have sections
(adjacent but inside the chapter). In the section, there will be a title, paragraphs, images, examples, theorems, and
so on. Examples will themselves contain paragraphs. A theorem might contain a statement, which contains some
paragraphs, which might contain some displayed math, and adjacent to the statement, there could be a proof, itself
containing paragraphs, etc.

The hierarchical nature of xml is perfect to capture the hierarchical nature of a scholarly document. Consider
the start of a PreTeXt document shown in Listing 1.2.1.

<?xml version="1.0" encoding="UTF -8"?>
<pretext >

<book>
<title >Hello world!</title>
<chapter >

<title >Getting Started </title>
<p>Welcome to PreTeXt!</p>
<!-- TODO: find something more to say ... -->

</chapter >
</book>

</pretext >

Listing 1.2.1 Source of a simple PreTeXt book project.

The first line is boilerplate that lets various programs know the rest of the file is XML, and the line start <!-- is
an example of a comment that won’t appear in the output. Besides this, you can start to see how the structure of the
book is layed out.

Whitespace and Indentation. The term whitespace refers to characters you type but typically do not see. For us
they are space, non-breaking space, tab and newline (also known as a “carriage return” and/or “line feed”). Unlike
some other markup languages, PreTeXt does not ever use whitespace to convey formatting information.

However, it can be useful to use whitespace to indent the different levels of the xml (and document) hierarchy.
Use two (or four) spaces for indentation; a good editor will visually respect this indentation, and help you with main-
taining the right indentation with each new line. Line up opening and closing tags at the same level of indentation,
and your editor should let you “fold” the code to visually hide blocks.

Whatever you do, use a style and stick with it. You could put titles on a new line (indented) after creating a new
chapter or section; some people like them on the same line, immediately adjacent. You could put a single blank line
before each new paragraph, but not after the last. And so on. The choice is yours, but consistency will pay off when
you inevitably come back to edit something. You have put a lot of work and effort into your source. You will be
rewarded with fewer problems if you keep it neat and tidy.

In some parts of a PreTeXt document, every single whitespace character is important and will be transmitted to
your output, such as in the <input> and <output> portions of a <sage> element. Since Sage code mostly follows
Python syntax, indentation is important and leading spaces must be preserved. But you can indent all of your code
to match your xml indentation and the entire <input> (or <output>) content will be uniformly shifted left to the
margin in your final output.

Never use tabs, they can only cause problems. You should be able to set your editor to translate the tab key to a
certain number of spaces, or to translate tabs to spaces when you save a file (and these behaviors are useful). Most
editors have a setting that will show whitespace as a small faint dots or arrows, so you can be certain there is no
stray whitespace anywhere.

Learn to Use Your Editor. Because XML requires a closing tag for every opening tag, it feels like a lot of typing.
The VS Code PreTeXt extension comes with many snippets (code completions) that can fill out lots of the markup
for you. More generally, any editor should know what tag to close next and there should be a simple command to

1.4 ☙ Where Next? ❧ 5

do that (for example, in Sublime Text on Linux, Alt-Period gives a closing tag). Not only is this quick and easy, it
can help spot errors when you forget to close an earlier tag.

If your editor can predict your opening tag, all the better. VS Code can recognize what tags are allowed at a given
position. Sublime Text recognizes if you already have a <section> elsewhere, so when you start a second section,
you very quickly (and automatically) get a short list of choices as you type, with the one you want at the top of the
list, or close to it.

Invest a little time early on to learn, and configure, your editor and you can be evenmore efficient about capturing
your ideas with a minimum of overhead and interference.

Revision Control. If you are writing a book, or if you are collaborating with co-authors, then you owe it to yourself
and your co-authors to learn how to use revision control, which works well with PreTeXt since the source is just text
files. The hands-down favorite is git. To fully understand it is beyond the scope of this guide but some information
is provided in Appendix ?? which has hints on how to best use git together with a PreTeXt project.

If you use the workflow recommended in the Chapter 2 using GitHub’s codespaces, you will get revision control
via git automatically, and VS Code provides a graphical user interface for all the basic operations you need.

1.3 Converting Your Source to Output

Once you have content created in PreTeXt files (i.e., xml files), you will want to convert these files into a output
format such as html, to be viewed in a web browser, or a pdf. Instructions for doing this will be discussed in
Chapter 2, and in even more detail in Chapter ??. Here we provide an overview of how the conversion works to help
you understand what is possible.

With PreTeXt “installed” (on your computer or in the cloud), converting PreTeXt xml into a full html website can
be as simple as typing pretext build html in a terminal, or hitting Ctrl+Alt+B in VS Code. Behind-the-scenes,
these commands read through your xml and use XSL 1.0 (eXtensiible Stylesheet Language) to transform the xml
source, using a number of xsl stylesheets that come with PreTeXt.

The recommended workflow for processing your source uses a python program we call the PreTeXt-CLI (cli is
command line interface). There are also a number of other free tools that can processes xml with xsl. For example,
xsltproc is a command line program that is usually installed by default on Linux systems and MacOS. This was the
recommended method in the early days of PreTeXt, and still works. Documentation for how to use xsltproc with
PreTeXt can be found in Chapter ??, but unless you are helping with the development of PreTeXt or are trying to do
something fancy, you probably don’t need it.

Some features of PreTeXt, such as the inclusion of images described in source, or including WeBWorK exercises,
requires the use of an additional processing, done in python. Some of these also require additional software (such
as LATEX or Sage). The PreTeXt-CLI does this automatically when building (and regenerates these assets if they have
changed since the last build). There is also a python script that can accesses these functions directly for use in
development. See Chapter ?? if you are curious.

1.4 Where Next?

To start playing with PreTeXt right away, work through the Chapter 2. It will guide you through a cloud-based setup
(no software install required) and you will create, edit, convert, and deploy your first document.

If you would like a general, high-level overview of features skip ahead to Chapter 3.
In-depth, comprehensive use of features is in Chapter 4.
If you have an existing project authored in LATEX you may be interested in the conversion process described in

Appendix ??.

Chapter 2

Getting Started Tutorial

This chapter serves as a tutorial for quickly getting started with PreTeXt in your web browser using free services
provided byGitHub¹. (Advanced userswho’d prefer to install our free and open-source software to their ownmachine
may choose to skip ahead to Section 2.4.)

Objectives
At the end of this tutorial you will have...

• Created a free GitHub account.

• Created a GitHub Repository and Codespace for authoring PreTeXt in your web browser.

• Learned the first steps to editing a PreTeXt document.

• Converted your document to both LATEX and accessible html.

• Deployed your html to the web via GitHub Pages.

The community does its best to keep this guide updated, but for even more up-to-date advice, join us at our
regular Zoom drop-ins announced at our Google group² or watch a recording posted in Section 2.3.

2.1 Using GitHub

2.1.1 What is GitHub?
GitHub is a freely-available service for authoring, sharing, and deploying documents and source code, owned by
Microsoft. It uses the free and open-source Git software for version management.

There are other services such as CoCalc¹ (see Section ??) and GitLab² for managing PreTeXt documents online, as
well as other ways to write PreTeXt that don’t require anything besides installing the free and open-source PreTeXt
software onto your own device (see Section 2.4 to learn more).

We will use GitHub for this tutorial as it the most popular way to share and disseminate PreTeXt documents, and
provides the easiest pathway to getting started writing in the PreTeXt language.

To create your free GitHub account, follow the instructions on GitHub’s signup page³. You can also log into
an existing GitHub account if you already have one. Be sure to note your GitHub username and password in your
password manager (or however you usually keep track of login credentials).

¹github.com
²groups.google.com/g/pretext-announce/
¹cocalc.com
²about.gitlab.com/
³github.com/signup

6

https://github.com
https://groups.google.com/g/pretext-announce/
https://cocalc.com
https://about.gitlab.com/
https://github.com/signup

2.2 ☙ Your First PreTeXt Document ❧ 7

Tip! Educators and non-profit researchers can get many of GitHub’s paid features for free. While this is not strictly
required for the rest of the tutorial, it’s a useful way to increase GitHub’s free Codespaces usage quotas.

Apply at Education.GitHub.com⁴ to unlock these features. In our experience, applications are usually processed
quickly for .edu email addresses, but you do not need to wait for approval to continue on with this tutorial.

2.1.2 Three GitHub concepts
This tutorial uses three GitHub services:

Codespaces
(github.dev)

The Codespace for your project is an application run in your web browser that gives you
access to a virtual computer with all the software recommended to author PreTeXt in-
stalled for you automatically. This Codespace is private to you, and lives at an address
like https://username-random-words-abc123.github.dev.

Repository hosting
(github.com)

The repository for your project represents the history of its edits that have been “committed
and synced” from your Codespace to it. This repository can be public or private (though we
encourage public repositories as they help the community provide support for each other),
and lives at an address like https://github.com/username/reponame/.

GitHub Pages
(github.io)

The GitHub Pages service provides free hosting for websites such as the HTML gen-
erated from a PreTeXt project. This website is public, and lives at an address like
https://username.github.io/reponame/.

Broadly speaking, you “author” within your Codespace, which you periodically “commit and sync” to your repos-
itory, and then occassionally “deploy” to your public GitHub Pages website.

2.1.3 Creating your repository and Codespace
Follow the instructions at https://github.com/PreTeXtBook/pretext-codespace to get started creating your reposi-
tory and Codespace. You’ll have the option to make your repository public (recommended if you want support from
the rest of the PreTeXt community) or private. Either way, those instructions will also walk you through creating
your private Codespace for authoring.

This takes a few moments, but is a one-time process. Take note of the github.com URL your new repository
lives at so you can find it the next time you want to work on your project. (You can always access your github.dev
Codespace link from there via the Code menu.) Then you’ll be ready for Section 2.2.

2.2 Your First PreTeXt Document

At this point, you should have a PreTeXt project set up as a github.com repository with a github.dev Codespace.
You can use the Code menu on the repository webpage to pull up the Codespace environment in your web browser
if you haven’t already.

The left-handmenu should display a file tree, containing a folder called sourcewith a file called main.ptx. These
files were created when you set up your Codespace, and form a complete, albeit very short, PreTeXt document.

Now you are ready to build it!

2.2.1 Building for web
You can build your entire project in a few different ways.

• Click the “PreTeXt” button in the center left of the bottom toolbar of the VS Code window (see Figure 2.2.1).
A dialog will pop up asking which PreTeXt command you want to run. Select Build to get a menu of options
to select a target to build: choose web.

• You can use the keyboard shortcut CTRL + ALT + p (replacing CTRL with CMD if you have a Mac) to get
the same dialogs. Or to build in one step, use CTRL + ALT + b .

⁴education.github.com/discount_requests/pack_application

https://education.github.com/discount_requests/pack_application
https://github.com/PreTeXtBook/pretext-codespace

2.2 ☙ Your First PreTeXt Document ❧ 8

• Select a PreTeXt command from the VS Code command pallette, which you can access by clicking the icon
in the bottom left of the VS Code window. You can also access this by typing CTRL + SHIFT + p (again,
replacing CTRL with CMD if you have a Mac). Start typing “pretext” to get a list of commands available.

• If you are comfortable entering commands in a terminal/command prompt, you can access one in your Code-
space using CTRL + ` . Then you can run pretext build web to build your project.

The resulting HTML files will be available in the output/web directory of your project. However, to view it, you
should NOT navigate there and open the files. Instead, read on.

Figure 2.2.1 PreTeXt commands in Codespaces

2.2.2 Viewing
You can preview these HTML files you just built using the View command. Again, you can access this in multiple
ways: PreTeXt buttom in the toolbar, CTRL + ALT + p , etc. Select View from the dialog. You may be given options
on how to view the document, depending on what VS Code plugins you have available to you. Try one or another
until you’re able to view your web build in either a new tab of your browser or a tab within VS Code.

The VS Code Live Preview is a good option, but it is buggy when used inside Codespaces. It seems to help to
use the VS Code command pallette to run Live Preview: Show Preview (External Browser), then close the tab
that opens, and start the process over. You may need to do this a few times before it works.

Now is a great time to try to make edits to your source files (maybe change the title). Note that these changes
aren’t updated live in your preview: you will need to build again, and then refresh the preview window to see them.
Note, you do not need to run the View command again unless you stop the preview server.

2.2.3 Building for print
The instructions above can be repeated to produce LATEX code: just choose print-latex instead of web as your target.
The resulting files are available in output/print-latex.

Of course, it’d be even more convenient to produce a PDF directly. This requires software that can process LATEX,
which should be installed in the PreTeXt Codespace by default. Repeat the above instructions with the print target
to produce a PDF. It can be downloaded by right-clicking output/print/main.pdf in the VS Code file explorer, or
previewed using a View command.

2.2.4 Saving your work
Using Codespaces will keep all your files “in the cloud”, saved automatically as you edit. As long as your Codespace
is active, your files will be saved there for your private use. However, inactive Codespaces are periodically cleaned
up by GitHub (as of writing, this happens after one month of inactivity), so you’ll need to periodally commit & sync
your work to your repository where it will never be deleted.

Recall that your Codespace lives at github.dev, while your repository has a github.com address like https://github.com/username/reponame).
This repository serves as a backup of your work in the Codespace, and has the added benefit of allowing collabora-
tors to access your files as well. As a bonus, if you made your repository public, members of the PreTeXt community
who watch the PreTeXt-support¹ Google group can create their own Codespace based on your public repository and
easily answer any questions you have.

While Git and GitHub have a lot of features, there’s a very simple way to use them via Codespaces. As you edit
files, you’ll notice that their filenames will turn orange, and new files will appear green. Likewise, a blue number
will appear in the left sidebar.

¹groups.google.com/g/pretext-support

https://groups.google.com/g/pretext-support

2.2 ☙ Your First PreTeXt Document ❧ 9

Figure 2.2.2 Filenames changing color as they are edited in Codespaces

This blue badge is next to the Source Control view. You will notice a list of files that were changed; you can click
on any of these to see what the changes are.

Figure 2.2.3 A ``Git diff'' showing changes in a file

Type a message describing the changes you’ve made then click the green “Commit and Sync” button. If it just says
“Commit”, use the drop-down menu to choose “Commit and Sync”. (If you forget to type a message describing the
changes you’ve made, then a new tab will open: “COMMIT_EDITMSG” where you can type the message. When
you are done, close the tab.)

2.2 ☙ Your First PreTeXt Document ❧ 10

Figure 2.2.4 Commiting and syncing changes

To see that this is successful, return to your github.com repository webpage. You should see your files with
all your committed/synced changes. (That is, most of them: many files, such as log files and temporary build files
that appear in gray within your Codespace, will not be synced. This is no problem: they are created during a build
automatically and don’t need to be, and really shouldn’t be, saved or shared with others.)

2.2.5 Generating assets
If your document contains certain elements, youmight need to generate their assets for use in certain output formats.
Depending on your build target, these include:

• <latex-image>

• <sagemath>

• <asymptote>

• <youtube>

• <webwork>

• <codelens>

Starting in CLI version 1.7, these assets will be automatically generated whenever you build your output. If you
change the source of these assets, they will be regenerated when you build.

Regardless of which version of the CLI you are using, you can generate assets as a separate step in much the
same way you run a build. You will see a Generate option in the PreTeXt command dialog, just below Build. Select
your target and wait for the process to complete, then Build once more to incorporate your generated assets.

2.2.6 Deploy
So you have worked tirelessly to prepare course notes or a book, built and previewed, synced changes to your git
repository, and now you are ready to share the results of your efforts with the world. It’s time to deploy your project!

From the “PreTeXt Commands” dialog, select “Deploy”. This will automatically take the most recent build of
your web target and host it through GitHub Pages². Watch the output pane for a link to your published site; unlike
the preview link you’ve been using on github.dev which is private to only you, this github.io link is ready to
share with the world. (It can take a few minutes for the site to get set up or updated; there should be another link to
view the progress of the GitHub “action” that reports the progress.)

By default, doing a deploy will just publish your web target. It is also possible to deploy multiple targets along
with a “landing” page directing a visitor of your site to the different versions of your project. See Section ?? for more
information.

²pages.github.com/

https://pages.github.com/

2.3 ☙ Videos ❧ 11

2.2.7 Using this guide and advanced features
The rest of this guide will help you on your way. However, keep in mind that this guide is the work of many
volunteers over many years, and certain sections may assume the reader is using mechanisms for writing PreTeXt
that have been around for much longer than the Codespaces environment recommended for this tutorial.

In particular, there are two advanced mechanisms used by many PreTeXt authors: the PreTeXt developer script
Chapter ?? (i.e. the pretext/pretext script) and the PreTeXt CLI Section ??.

Under the hood, the PreTeXt CLI is what you’re using in Codespaces, and it also has the ability to call the PreTeXt
developer script as well. If you ever want to use a PreTeXt CLI command, you can open a Terminal in your Codespace
using the menus, or by pressing Ctrl + ` (the backtick key, found in upper left of many keyboards).

From the terminal, you can type in any PreTeXt CLI commands directly. For example, typing in the CLI command
pretext build web and running it by pressing Enter builds the web target.

Figure 2.2.5 Using the PreTeXt CLI with a Codespaces terminal

The CLI should be sufficient to do nearly everything you want to do for your project, and using the developer
script should be exercised with caution. Nonetheless, to access a pretext/pretext developer script feature, you
can use pretext devscript. For example, if the documentation suggests a command like pretext/pretext -foo
bar, you could try running pretext devscript -foo bar.

2.3 Videos

Regularly produced videos showcasing how to get started with PreTeXt as the ecosystem evolves over time is cu-
rated by Steven Clontz¹. Roughly once a month, a “Getting Started with PreTeXt” presentation is offered to new or
prospective community members, showcasing the latest recommendations for writing modern PreTeXt.

The most recent recording of this series is provided here for your reference.

¹clontz.org

https://clontz.org

☙ Getting Started Tutorial ❧ 12

Standalone

Figure 2.3.1 Getting Started in 2023 March

2.4 For Advanced Users New to PreTeXt

This section is intended for users who have read Chapter 1 and are already experienced with other open-source
software projects or command-line tools. If you’re more interested in a browser-based workflow to getting started
with PreTeXt, check out Section 2.1.

PreTeXt is an open-source XML¹ language primarily powered by XSLT² and Python³ tools.
For new authors comfortable working on the command line who want to use their favorite text editor or IDE,

we recommend pip installing the PreTeXt-CLI from the Python Package Index. Section ?? has these details, and
pretext -h and pretext CMD -h are at your disposal as well after installation.

Some context for experienced Python developers: PreTeXt development is primarily split over two GitHub repos-
itories: PreTeXtBook/pretext⁴ for the “core” functionality of PreTeXt, and the more recent PreTeXtBook/pretext-cli⁵
that packages up these resources into a Python packagewith several UX enhancements such as a simplified command
line interface and project management that does not require the use of custom makefiles.

If you’re interested in potentially contributing back to PreTeXt someday, please feel free to request to join our
developer Google Group⁶ and say hello!

¹en.wikipedia.org/wiki/XML
²en.wikipedia.org/wiki/XSLT
³en.wikipedia.org/wiki/Python_(programming_language)
⁴github.com/PreTeXtBook/pretext
⁵github.com/PreTeXtBook/pretext-cli
⁶groups.google.com/g/pretext-dev

https://pretextbook.org/doc/guide/html/tutorial-videos-video.html
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XSLT
https://en.wikipedia.org/wiki/Python_(programming_language)
https://github.com/PreTeXtBook/pretext
https://github.com/PreTeXtBook/pretext-cli
https://groups.google.com/g/pretext-dev
https://groups.google.com/g/pretext-dev

Part II

Author's Guide

13

Chapter 3

Overview of Features

This chapter is a high-level view of the important concepts, features and design decisions that go into the creation
of PreTeXt. For careful exact descriptions of details, we will direct you to one of the many sections in the Topics
chapter. So this chapter should make you aware of what is possible and expand on the philosophy described earlier
in Section 1.1, while also giving you examples of many basic constructions you can use to get started quickly.

3.1 Structure

A PreTeXt document is a nested sequence of structural divisions. For a book, these would go <part>, <chapter>,
<section>, <subsection>, and <subsubsection>. Using <part> is optional, but a bookmust always use <chapter>
(or else it is not a book!). No skipping over divisions. For example, you cannot divide a <section> directly into
several <subsubsection>s without an intervening <subsection>.

An <article> starts divisions from <section>, though it may choose to have no divisions at all. <paragraphs>
are exceptional. They lack a full set of features, but can be used to divide anything, in books or in articles, though
they are always terminal since you cannot divide them further. You will have noticed that we prefer the generic term
division (rather than “section”) since a <section> is a very particular division.

A division may be unstructured, in which case you fill it with paragraphs and lists and figures and theorems and
so on. But if you choose to structure a division it must look like the following:

• An optional <introduction>

• One or more divisions of the next finer granularity

• An optional <conclusion>.

Either version may have a single <exercises> division at the end, or other “specialized” divisions. The structured
version may have more than one <exercises>, and more than one of each of the types of specialized divisions. For
example a <references> is a second example of a specialized division. (See Section 4.7.)

The <introduction> and <conclusion> divisions are meant to be short, and may not contain any other num-
bered tag. No exercises, theorems, listings, etc. If you want to have an introductory division with any of the num-
bered elements you are free to omit the <introduction> and use the next finer subdivision with a <title> of
“Introduction”.

Every division tag can carry an @xml:id attribute, and it is a good practice to (a) provide one, (b) use a very short
list of words describing the content, and (c) adopt a consistent pattern of your choosing. Do not use numbers, you
may later regret it. These are optional, and with practice you will learn how best to use them. See Section 3.4 just
below for more on this.

The <exercises> and <references> tags are special divisions, see Section 4.3 and Subsection 4.7.1.
This explanation is expanded and reiterated at Section 4.6 and is worth reading earlier rather than later.

14

3.4 ☙ Cross-References ❧ 15

3.2 Paragraphs

Once you have divisions, what do you put into them? Most likely, paragraphs. We use long, exact names for tags
that are used infrequently, like <subsubsection>. But for frequently used elements, we use abbreviated tags, often
identical to names used in html. So a paragraph is delimited by simply the <p> tag.

Lots of things can happen in paragraphs, some things can only happen in a paragraph, and some things are
banned in paragraphs. Inside a paragraph, you can emphasize some text (), you can quote some text (<q>), you
can mark a phrase as being from another language (<foreign>), and much more. You can use almost any character
your keyboard can produce, but need to be careful with the three xml exceptional characters: ampersand (&), less
than (<), and rarely, greater than (>). (See Section 3.14.) You must put a list inside a paragraph, and all mathematics
(Section 3.6) will occur inside a paragraph. You cannot put a <table> or a <figure> in a paragraph, and many other
structured components are prohibited in paragraphs.

Paragraphs are also used as part of the structure of other parts of your document. For example, a <remark> could
be composed of several <p>. As you get started with PreTeXt, remember that much of your actual writing will occur
inside of a <p> and you will have a collection of tags you can use there to express your meaning to your readers.

So early in yourwriting project, familiarize yourself with the components of a paragraph detailed in Section 4.1.

3.3 Blocks

Besides paragraphs (Section 3.2) the most common object to include in a division is what we informally refer to as
a block. These are self-contained units of text, almost always set-off visually, and likely with a number and a title.
If you know LATEX, you may be in the habit of calling these environments. Mathematical results are one example,
and you can start at Section 3.20 to learn more. There are others that are more general-purpose, such as <remark>
and <example>. While fundamentally different from these blocks that are textual with reflowable lines, objects like
<figure> and <table> (Section 3.13) or <program> and <console> (Section 3.10) are blocks, even if their contents
are more rigid or spatial. For a more precise description, see Section 4.2.

3.4 Cross-References

Cross-references in a PreTeXt document are easy, powerful and flexible. So it is worth familiarizing yourselves with
them early, here and then ahead in Section 4.5.

Any element that you place a @xml:id on can become the target of a cross-reference. This could be a division, a re-
mark, a bibliographic entry, or a figure. So for example, suppose your source had <subsection xml:id="subsection-flowers">
and someplace else you wrote <xref ref="subsection-flowers" />. Then at the latter location you would get
a reference to the Subsection that discusses flowers. In print this might just be the number for the subsection, but
in various electronic output formats, these cross-references can be very powerful interactive ways to explore the
content. And the mechanism is always the same, pair up an @xml:id on a target with a @ref on an <xref> cross-
reference.

Since the value of an @xml:id is also used in a variety of ways, such as to construct some file names, some care
should be taken in how you author them. We limit the possible characters to letters and numbers (a-z, A-Z, 0-9),
with hyphens and underscores (-_) available as word-separators. Our advice is to stick to lowercase letters, though
we are not yet aware of any problems with case-insensitivity. So in short, use kebab-case or snake-case for your
@xml:id values.

For more, see Section 4.5 because cross-references have many features. But first, here are two features you do
not want to miss. In the early stages of writing, you can author <xref provisional="subsection-flowers" /> to
point to a subsection you are contemplating (but have not written yet) and youwill get various polite reminders to get
that straightened out eventually (see Section ?? for details). Also the default behavior is to automatically provide the
generic name of the target, so youwill get something like “Subsection 4.3.2” without ever typing the “Subsection” part.
If you move the target, the generic name will adjust if necessary, and if you switch to one of the supported languages,
the generic name will switch language (see [provisional cross-reference: topic-on-languages].

3.7 ☙ Images ❧ 16

3.5 Titles

Divisions always require titles, you accomplish this with a <title> tag first thing. Almost everything that you can
use in a paragraph can be used in a title, but a few constructions are banned, such as a displayed mathematical
equation (for good reason). Try to avoid using footnotes in titles, even if we have tried to make them possible.

Since titles migrate to other places, such as a Table of Contents, there are options for variants of a title, such
as a short version, or a markup-free version. Some (major) titles may also be structured as a sequence of <line>
elements to control line-breaks for long titles.

Many, many other structures admit titles. Experiment, or look at specific descriptions of the structure you are
interested in. Titles are integral to PreTeXt, much like cross-references. Titles migrate to the Table of Contents, get
used in page headers for print output, can be used in lists (such as a List of Figures), and can be used as the text of a
cross-reference, instead of a number. You might be inclined to not give a <remark> a title, but it would definitely be
good practice to do so (study Best Practice 4.8.1). For more details consult Section 4.8.

3.6 Mathematics

With experience, you may realize that PreTeXt utilizes three principal languages. One is the narrative of everyday
sentences and paragraphs. Most of what you write in a paragraph, or a table cell, or a title, or a caption, or an
index heading, is in this language. Then there is the structural language, which is the majority of the elements in
PreTeXt, such as <chapter>, <theorem>, or <figure>. Then finally, there is the language of mathematical symbols
and notation.

A key design decision is that mathematical symbols, expressions and equations are authored using LATEX syntax.
More precisely, we support the symbols and constructions provided by MathJax¹, which quite closely follows the
amsmath package maintained by the American Mathematical Society. Neither you nor I want to write MathML² by
hand!

The symbols and macros supported byMathJax can be found at their Supported LATEX commands³ documentation.
Look here to see which parts of LATEX may be used in your mathematical expressions.

For inline mathematics, use the short <m> tag within a <p> (or within a <title> or <caption>). For example,
<m>\alpha^2 + \beta^4</m> will do what you expect, in print and in electronic outputs. To get a single equation,
centered, with some vertical separation before and after, use the <me> tag (“math equation”) in the same way within
a <p>, but do not try using it within a <title>. For example, <me>\rho = \alpha^2 + \beta^4</me>. If you want
your equation numbered, switch to the <men> tag (n = “numbered”).

There is a way to incorporate your own (simple) custom LATEX macros within mathematics (only). They will be
effective in your print and electronic outputs, and can be employed in graphics languages like tikz and Asymptote.
You can also author multi-line display mathematics using the <md> tag surrounding a sequence of <mrow> elements
(or the <mdn> variant for numbered equations). We defer the details to Section 4.9.

3.7 Images

You can include an image via the 

See Subsection ?? for advice on writing effective image descriptions.

4.14.2 Vector Graphics
An image is a vector graphic if the file describes the geometric shapes that constitute the image. So a simple diagram
would be a good candidate, but a photograph would not. Popular formats are Portable Document Format (pdf) and

4.14 ☙ Images ❧ 63

Scalable Vector Graphics (svg). You will get the best results with pdf images in LATEX output and svg images for
html. The principal advantage of these formats is that they scale (big or small) smoothly, along with fonts. This is
critical when you cannot predict the screen size for a reader of an electronic version.

Unless you describe these images with a language (see Subsection 4.14.3), you are responsible for providing the
pdf and svg versions. The pdf2svg utility is very useful if you have pdf images only. To have these different images
used for different output formats, you simply follow the instructions above, but do not include a file extension. This
alerts the conversion to use the best possible choice for any given output, and to embed it correctly. So presuming you
made available the files images/toad-life-cycle.pdf and images/toad-life-cycle.svg, the following example
would incorporate the pdf version with LATEX output and the svg version for html output.

<image source="images/toad-life-cycle" width="85%">
<description>The four stages of a toad's life.</description>

</image>

Vector graphics images can be createdwith source code in different languages (Subsection 4.14.3) or with applications,
such as Inkscape (Section ??). If you are creating non-technical graphics that have lots of geometric shapes and simple
text (a look like a movie poster), then using a tool like Inkscape is a great choice since its native file format is an
enhanced version of svg and a faithful pdf is easy to create.

4.14.3 Images Described by Source Code
There are various languages whichmay be used to describe diagrams, geometric objects, or data plots. A key strategy
enabled by PreTeXt is to put these specifications of such images directly in your document’s source rather than losing
track of them over time.

So we have various elements which are children of 

Here is the result. Look elsewhere for examples of 3-D output from Asymptote.

0.0

0.1

0.2

0.3

0.4

d
P
/d

x

−3 −2 −1 0 1 2 3

x

Notes:

• Notice the necessity of escaping the less-than in the for-loop. See Subsubsection 4.1.4.2.

• Setting a @xml:id is necessary to have a stable name for graphics files that will be generated.

• The <description> is an important part of making your output accessible.

• Notice the use of LATEX for the label on the vertical axis. All of your macros defined in docinfo are available
for use, so you can keep notation consistent.

• You need to produce pdf versions of your diagrams for use in a conversion to LATEX.

• You need to produce html versions of your diagrams for use in a conversion to an electronic format based
on html. For a 2-D diagram these are a thin wrapper around an svg image. For a 3-D diagram these are
interactive WebGL objects.

It is very important to note that these html versions contain the height and width of the diagram and these
are queried by a conversion of your document to html format in order to compute the aspect ratio. Therefore
they need to be available with your other source files (typically in an images directory). So in a very real sense
these files become part of your source.

• You may want to produce svg versions of your diagrams for conversion to epub, and png versions for conver-
sion to the epub precursor for Kindle format.

• pdf versions produced by the pretext script will not include the RPC extensions. So “rotatable” 3D images
rendered by the proprietary viewer, Adobe Acrobat, are not created, consistent with our open source philoso-
phy.

• Colors in Asymptote can be hard-coded using rgb syntax. Colors can also be defined at the top of anAsymptote
file, to be referred to later. You may wish to produce pdf in both color (electronic) and black and white (print
on demand) formats, and you probably do not want to maintain parallel source for both versions. Rather
than writing (for example) pen p=rgb(0,0,.7); in your Asymptote code, you can write pen p=curvepen1;.
Then, in the <docinfo> section of your document, you can add an <asymptote-preamble> and include the
line pen curvepen1=rgb(0,0,.7);. Once you are ready to produce your black and white version, you need
only change the definition of curvepen1 in your <asymptote-preamble>.

One note of caution: if your preamble includes Asymptote code that only works once certain libraries are
loaded, you must include lines to import those libraries in your preamble. For example, to define a material
you must first have the line import three;.

4.14 ☙ Images ❧ 65

Asymptote may be run as a program installed locally, but the project also has an on-demand online server written
by Supakorn Jamie Rassameemasmuang. By default, the pretext/pretext script (Chapter ??) will interface auto-
matically with this server to create your diagrams. Furthermore, Asymptote provides a very useful web application²
written by Pedram Emami. This is a great place to learn, experiment, and iterate as you become more skilled at
building high-quality graphics to illustrate the concepts in your document.

Best Practice 4.14.1 Build 3-D Asymptote Figures. If your project uses geometric or mathematical objects that
are three-dimensional, invest some time in learning the Asymptote vector graphics language. The interactive dia-
grams for your html output produced by Asymptote, in webgl format, are outstanding and will greatly enhance
your project. (And the other static formats are similarly excellent.) The pretext/pretext script will create these
diagrams, in the necessary formats, with no extra software by using an online server.

4.14.3.2 Images in LATEX Syntax

There are a variety of LATEX packages for authoring a diagram, plot, or graph. Examples include: TikZ, PGF, Xy-pic,
and PSTricks. Generally, the <latex-image> tag allows you to incorporate this code into your source and PreTeXt
realizes these descriptions as images in your output.

For LATEX output the procedure is transparent—PreTeXt simply incorporates the preamble information and the
image’s code in the correct places in the LATEX output, scaled to fitwhatever space is described on the 
</figure>

This will result in:

4.14 ☙ Images ❧ 67

A

GC

U

A
G

C

U

A

G
C

UA
G

C

U

A

G
C

U

A G C U A G C
U
A
G
C
U
A
G
C
UA

G
C
U
A
G
C
U
A
G C U A G C U

AGCUAGC
U

A
G

C
U
A
G
C
U A

G
C
U
A

G
C

U
A

GCUAGCU

O-

O

NH+
3

NH2

O-

O

NH+
3

NH2

O

O-

O

NH+
3

NH NH2

N

O-

O

NH+
3

OH
O-

O

NH+
3

OH

O-

O

NH+
3

S

O-

O

NH+
3

O-

O

NH+
3

OHO

O-

O

NH+
3

OH

O

O-

O

NH+
3

O-

O

NH+
3

O-

O

NH+
3

O-

O

NH+
3

NH2O

O-

O

NH+
3

NH

N

O-

O

NH+
3

NH NH2

N

O-

O

NH+
2

O-

O

NH+
3

O-

O

NH+
3

OH

O-

O

NH+
3

NH

O-

O

NH+
3

SH

O-

O

NH+
3

OH

O-

O

NH+
3

O-

O

NH+
3

K
N

R

S

T

I

M / ⋆

I

E

D

G

A

VQH

R

P

L

†

Y

†
W

C

S

L
F

Figure 4.14.2 RNA Codons Table, by Florian Hollandt, from TEXample.net³

4.14.3.3 Scaling TikZ Images

Images authored in TikZ⁴ are the most popular. Text (nodes) in a TikZ picture are at whatever the current LATEX font
size is. The other parts of the picture (lines, circles, rays, etc.; the “line art”) can be scaled as part of an overall scale
factor. The point being, the scale factor will not scale the text simultaneously. It is not unlike a map application on
your mobile device. The name of a road is too small to read, so you zoom in on the map, making the street bigger,
but the name stays in the same font size and is still unreadable. This means some manual labor is involved when
you place a TikZ picture into a PreTeXt document.

For many authors, the goal is to have the text in their TikZ picture have the same size as the surrounding text,

³texample.net/tikz/examples/rna-codons-table/
⁴github.com/pgf-tikz/pgf

https://texample.net/tikz/examples/rna-codons-table/
https://github.com/pgf-tikz/pgf

4.14 ☙ Images ❧ 68

both in a pdf and in html. We now explain how to accomplish this consistently.

Preparation. Well before designing many TikZ images, answer the following questions.

1. For your LATEX output, what will the overall font size be?

2. For your LATEX output, what will the width of the text block be? Note that this will normally be computed by
PreTeXt, dependent on your chosen font size. A larger font will mean a greater width. You can generate the
LATEX source file and look early in the preamble to see what width is being used. It is also possible that you
may be setting this with yourself (Section ??). The ratio of line width to font size is always 34 : 1.

TikZ in LATEX. Every image in PreTeXt may be constrained by width and/or margins, or may be restricted to a
panel of a <sidebyside> with a certain width. So the TikZ code you author will create an image that is then scaled
by PreTeXt to fit the constraints (much as any other image is scaled). Except this is done in a way that scales both
the font and the line art. Your main goal is to have this scaling use a scale factor of 1.0. Which, of course, sounds
like a waste of effort, but it is critical for how the image behaves in html (next).

To accomplish this unit scaling, follow this procedure for each TikZ picture.

1. Determine the width of the TikZ picture itself, in physical units of length. Typically, the lengths used for
larger portions are described in centimeters. But note that an overall scale factor is sometimes applied for
convenience (or as a result of poor planning!). Also, the default unit length (centimeters) can be changed. Note
also, that text may “push out” to the right and left, defining the boundaries on the sides, and these lengths can
be hard to compute or predict.

2. Recall the width of your text (above). Recognize that list items will be indented (reducing width), and perhaps
there are multiple indents if a list has multiple levels.

3. Now you want the width of your picture as a percentage of the overall available width. By default, your overall
width will be points, and your picture width will be in centimeters. You may be familiar with a “big point” (or
“desktop publishing point”) which is 72 points to the inch. TEX however uses 72.27 points to the inch, which
makes a TEX point equal to 0.03514598 centimeters. Convert to whatever common unit makes sense to you,
since it is the dimension-less ratio you are after.

4. Use this percentage as the @width attribute on the 

Some characters for comparison: Foo Bar Baz Qux

Foo Bar

Baz Qux

In the pdf version, the text matches between the image and the surrounding text almost identically. We could
slide the image right and left by adjusting the margins (the default is to be centered). But if we want the image bigger
and smaller, we need to adjust the TikZ code and recompute the @width attribute.

Now for html we need to produce an svg version that is a close match. The html version is a close match for
LATEX built with a computed text width (for any font size). We do not want to change the percentage of the width
devoted to the TikZ picture, and we do not want to change the TikZ code itself. If we had not chosen a different
text width (the 6.5 inches, versus a computed 340 point), then we could generate the svg by supplying the same
publication file, so as to use the same font size. However, our text width is 38% larger in the LATEX version,

6.5 in
340 pt

=
6.5 in

(
72.27 pt

1 in

)
340 pt

= 1.3816

The font size needs to increase by a similar percentage,

10 pt× 1.3816 = 13.816 pt ≈ 14 pt

So we generate the svg image with a different publication file, giving a font size of 14 point. The html font in the
text may be very different from the LATEX font used in the TikZ picture, but their sizes are nearly identical. Note that
our use of LATEX only supports 8 different font sizes, so it was fortuitous in this example that the 38% increase was so

4.14 ☙ Images ❧ 70

close to the supported 14 point font size. Note also, that since we used a different text width for the pdf, the resulting
40% increase in the font size for the svg could play havoc with text that has been placed carefully not to overlap
other components of the picture. □
There are myriad ways to scale and transform a TikZ picture. You might choose to intentionally use a smaller font
size than the surrounding text, as in Figure 4.14.2. Or, fidelity with the surrounding text might not be important
to you. Or you might prefer that images perform better in html. But hopefully the above discussion and example
provide enough insight into how the various constructions behave. The important points are:

• TikZ uses physical units for the overall width of a picture, and nodes have text using the ambient font size of
the PreTeXt LATEX file (unless prescribed otherwise).

• PreTeXt scales a TikZ picture uniformly (text and line art) to fit into constraints given in the source.

• The svg version of a TikZ picture is also uniformly scalable and at the same width as the original will have text
of the correct font size. However, when used in html output, it is scaled on the assumption that the ratio of the
line width to the font size is 34:1. This is the default width computed by PreTeXt for all supported font sizes.
Changes in this ratio for pdf production requires an equivalent change in font size during svg construction,
via the publication file.

4.14.3.4 Images in Sage Syntax

Sometimes the necessary computations for an image are not part of the capabilities of whatever system is actually
realizing the image. We have good support for Sage in other parts of your document, and Sage has an extremely
wide variety of computational capabilities, in addition to letting you program your own computations in Python
syntax with the full support of the Sage library. Rather than translating Sage output as input to some other graphics
program, we simply capture the graphics output from Sage. So if your graphics are derived from non-standard, or
intensive, computation this might be your best avenue.

Use the <sageplot> element, in a manner entirely similar to the <asymptote> element and the <latex-image>
element, as a child of 
</figure>

This will result in:

-1.5 -1 -0.5 0.5 1 1.5

-4

-3

-2

-1

1

2

3

4

Figure 4.14.5 Negative multiple of a curve

Note the necessity of using the pretext script (Chapter ??) to independently invoke Sage, no matter what sort
of output is being created for your document.

4.14.4 Image Formats
Best Practice 4.14.6 Preferred Image Formats. The best formats for images, in order, are:

SVG Vector graphics format ideal for html output formats. Scalable and compact. Converts to other formats,
such as pdf.

PDF Vector graphics format ideal for print and pdf output formats. Good tools exist to convert back-and-
forth between svg and pdf.

PNG Lossless and compressible format for raster images. May be used for both html and pdf outputs.
JPEG Compressed lossy format which works well for photographs. May be used for both html and pdf

outputs. png should be preferred when there is a choice, except in the case of a photograph. Converting
between these formats is unlikely to be an improvement.

4.14.5 Image Archives
As an instructor, you might want to recycle images from a text for a classroom presentation, a project handout, or an
examination question. As an author, you can elect to make images files available through links in the HTML version,

4.14 ☙ Images ❧ 72

and it is easy and flexible to produce those links automatically.
First, it is your responsibility to manufacture the files. For making different formats, the pretext script can

sometimes help (Chapter ??). The Image Magick convert command is a quick way to make raster images in different
formats, while the pdf2svg executable is good for converting vector graphics pdfs into svgs. Also, to make this easy
to specify, different versions of the same image must have identical paths and names, other than the suffixes. Finally,
the case and spelling of the suffix in your PreTeXt source must match the filename (e.g. jpg versus JPEG). OK, those
are the ground rules.

For links for a single image, add the @archive attribute to the <image> element, such as

<image ... archive="pdf svg">

to get two links for a single image.
To have every single image receive an identical collection of links, in docinfo/images place an <archive>

element whose content is the space-separated list of suffixes/formats.

<archive>png JPEG tex ods</archive>

will provide four links on every image, including a link to an OpenDocument spreadsheet.
For a collection of images that is contained within some portion of your document, you can place an @xml:id

on the enclosing element and then in docinfo/images place

<archive from="the-xml-id-on-the-portion">svg png</archive>

to get two links on every image only in that portion (chapter, subsection, side-by-side, etc.). The @from attribute is
meant to suggest the root of a subtree of your hierarchical document. If you use this, then do not use the global form
that does not have @from.

You may accumulate several of the above semi-global semi-local forms in succession. An image will receive links
according to the last <archive> whose @from subtree contains the image. So the strategy is to place general, large
subtree, specifications early, and use refined, smaller subtree specifications later. For example,

<archive from="the-xml:id-on-a-chapter">svg png</archive>
<archive from="the-xml:id-on-the-introduction">jpeg</archive>
<archive from="the-xml:id-on-a-section-within" />

will put two links on every image of a chapter, but just one link on images in the introduction, and no links at all
on every image image within one specific section. Again, do not mix with the global form. You can use the root
document node (e.g. <book>) for @from to obtain a global treatment, but it is unnecessary (and inefficient) to provide
empty content for the root node as first in the list—the same effect is the default behavior.

Notice that this facility does not restrict you to providing files of the same image, or even images at all. You
could choose to make data files available for each data plot you provide, as spreadsheets, or text files, or whatever
you have, or whatever you think your readers need.

Finally, “archive” may be a bit of a misnomer, since there is no historical aspect to any of this. Maybe “repository”
would be more accurate. Though for a history textbook, it might be a perfect name.

4.14.6 Copies of Images
Sometimes you want to use the same image more than once. Putting it in a <figure> and then making a cross-
reference (<xref>) can work well in html output since it will be available as a knowl. However in a static format
(pdf, print) the reader will need to chase the cross-reference.

For a raster image, you can just point to the file again with the @source attribute. You are free to wrap it in a
figure and thus change the caption. It will get a new number as a new figure, and you will need to assign a new
unique @xml:id attribute. Maybe appending -copy-2, or similar, to the @xml:id will be helpful.

If you have a figure generated from source code (such as in TikZ) you really do not want to edit and maintain
two copies that may not stay in sync. Instead, you can place the code into a file and xinclude it twice. Study
Section ?? carefully, and note that this is an excellent place to take advantage of setting the @parse attribute to text
(no need to escape problematic xml characters). Notice that when you generate images, you will have two image
files with identical contents, but different names. This is no place for false optimization. Bits are cheap and your

4.15 ☙ Programs and Consoles ❧ 73

time is valuable. It is far more important to only maintain a single copy of the source, than to be caught up with
the “waste” of having two copies of the same file (and which are managed for you). We demonstrate this with the
sample book, since it is all set up with the xinclude mechanism. See the two plots of the 8-th roots of unity in the
complex numbers section of the chapter on cyclic groups.

4.15 Programs and Consoles

4.15.1 Content and Placement of Programs and Consoles
A <program>will be treated as verbatim text (see Section 3.16), subject to all the exceptions for exceptional characters
(see Section 3.14). Indentation will be preserved, though an equal amount of leading whitespace will be stripped from
every line, so as to keep the code shifted left as far as possible. So you can indent your code consistently along with
your xml indentation. For this reason it is best to indent with spaces, and not tabs. A mix will almost surely end
badly, and in some programming languages tabs are discouraged (e.g. Python).

A <console> is a transcript of an interactive session in a terminal or console at a command-line. It is a sequence
of the following elements, in this order, possibly repeated many times as a group: <input>, and <output>. The
<output> is optional. The content of these two elements is treated as verbatim text (see Section 3.16), subject to all
the exceptions for exceptional characters (see Section 3.14). A @prompt attribute on the <input> can be supplied to
provide a system prompt distinct from the actual commands. The default prompt is a dollar sign followed by a space.
If it is more convenient @prompt may be supplied on the <console>, to be used in each enclosed <input>. If you do
not want any prompts at all, just use an empty value for @prompt.

A <program> or <console> may be wrapped in a <listing>, see Section 4.19. This will behave similar to a
<figure>, with the <caption> displayed below, and a number assigned. So, in particular, if your program or console
is important enough to cross-reference, it is an enclosing <listing> that serves as the target.

The @language attribute may be used to get some degree of language-specific syntax highlighting and/or inter-
active behavior. We will eventually provide a table of attribute values here. They are always lowercase, and a good
first guess is likely to succeed.

In some output formats, notably html, the syntax highlighter can add lines or highlight individual lines of code.
Highlighting lines is not supported for LATEX output. To display line numbers, set the @line-numbers attribute to
yes. To highlight particular lines, set @highlight-lines to a comma-separated list consisting of individual lines
and/or ranges indicated with dashes. Some examples are: 5, 2,5, 2,5-8,10-15,15.

For interactive versions hosted on Runestone servers, the @label attribute is critical, just like for interactive
exercises. So be certain to read Best Practice 4.12.1.

4.15.2 Interactive Programs, CodeLens
CodeLens is an interactive version of a computer program, which can be visualized by stepping through the code one
statement at a time, watching output, variables, and other data structures change. So it is similar to a debugger, except
the reader does not set breakpoints or modify program data on-the-fly. This is possible automatically for several
different languages when your html is hosted on a Runestone server (Chapter ??). This may also be accomplished
“in browser” when hosted on any old generic web server. The catch is that for a generic server a publisher must
generate trace data in advance, typically with the PreTeXt-CLI (Section ??). Place the <interactive> attribute on a
<program> element with the value codelens to elect this behavior (no is the default value). Also, be sure to specify
a language from the supported languages: Python, Java, C, and C++. Consult Table 4.15.1 below for a summary of
various combinations. When an output format does not support an interactive CodeLens instance, the fallback is a
static program listing.

4.15.3 Interactive Programs, ActiveCode
ActiveCode is an interactive environment where a reader may work on code through repeated edit-compile-test
cycles. Code can be provided by an author as a complete program to be modified, a partial program to be completed,
or nothing at all. One good example is that maybe header files, import statement, and similar are provided, and a
skeleton of a main entry-point procedure is also provided. Then a reader can concentrate on the more conceptual

4.16 ☙ Data Files ❧ 74

parts of the programming. Some languages will be executable “in browser” on any old generic web server, while
others must be on a Runestone server (Chapter ??) where a Jobe Server¹ is running to support the execution.

Place the @interactive attribute on a <program> element with the value activecode to elect this behavior
(no is the default value). Also, be sure to specify a language from the supported languages. Consult Table 4.15.1
below for a summary of various combinations. When an output format does not support an interactive ActiveCode
instance, the fallback is a static program listing.

For languages that support CodeLens, a button will be created that allows the reader to step through the program.
For some programs, especially ones using libraries like turtle graphics or image, CodeLens will not function. To
prevent showing the CodeLens button on programs for it will not work, authors can set the @codelens attribute to
no.

Note also that a data file may be provided independently for consumption by an ActiveCode program. See
Section 4.16.

ActiveCode elements that are language sql can make use of an SQLite database file. This is different than a
datafile (which is expected to be text or an image). To include a database file, use the @database on the <program>
element and specify the file to load as a string relative to the @@external top-level directory

If you want to include code from one or more preceding <program> elements, use the @include attribute whose
value is a list (comma-separated or space-separated) of @xml:ids for the code you want included.

4.15.4 Interactive Program Capabilities
This table lists which types of interactivity are available on various combinations of servers and programming lan-
guages. The entry “AC + CL” means that both ActiveCode and CodeLens instances are availble, but the ActiveCode
instance will have a CodeLens button enabled.

Note that python is generic Python with the standard libraries (version 3.x). On the other hand python3 is a
Runestone server installation (only) with a number of additional popular Python packages available, such as numpy
and pandas.

Table 4.15.1 Interactive Programs

Language @language Server
Generic Runestone

Python python AC + CL AC + CL
Python 3 python3 AC
Java java CL AC + CL
C c CL AC + CL
C++ cpp CL AC + CL
JavaScript javascript AC AC
HTML html AC AC
SQL sql AC AC
Octave octave AC
AC = ActiveCode, CL = CodeLens

4.16 Data Files

In concert with interactive programs (see Section 4.15) you can define a file of data that may be employed by those
programs. The necessary element is <datafile>. It requires a @label attribute. The @filename is also required and
is the name the file is known by in an ActiveCode program. Do not try to impose any sort of directory structure on
this name. Just a filename. In the case of a text file (see below), the @editable attribute is optional. The value no
is the default, with yes as the other option. The attributes @rows and @cols are optional for text files, and default
to 20 and 60 respectively. Finally, a non-editable text file (only) may have its contents hidden by setting the @hide
attribute to yes, rather than the default value of no.

¹github.com/trampgeek/jobe

https://github.com/trampgeek/jobe

4.16 ☙ Data Files ❧ 75

Where might you place a <datafile>? Lots of places are possible, such as in an <example> or a programming
<exercise>, close to an ActiveCode <program>. So, in expository material or in activities for readers to work
through. The purpose-built COMPUTATION-LIKE block, <data>, which will get you a heading, number, title, cross-
reference target, etc. (see List 4.2.2), is an option if the file itself needs more prominence or dedicated explanation.
Notice that this feature is very powerful, and thus requires a bit of machinery to support. If you just want to point
your reader to a file (and leave them to work with it outside of your project), either globally or locally, the read about
the <dataurl> element at Section 4.16.

Text as Data Files. Inside of a <datafile> place an <pre> element. There are then two options: provide the
contents of the text file right in your source PreTeXt file, as you might for other preformatted text, or supply a
@source attribute whose value is the name of an external text file you provide. The former is appropriate for “toy”
examples, while the latter may be used for “serious” files with many lines, or with long lines. Note that if you provide
the file as the content of the <pre> element, it can be indented to match your source file indentation, and will undergo
some manipulation, such as removing leading whitespace, and ensuring a final newline, but preserving any relative
indentation. If provided via a @source attribute, there is no manipulation.

Such a text file may be declared editable by the reader, presumably to allow them towitness the resulting behavior
of a some employing program. The @rows and @cols attributes describe the viewport into the file provided in the
html output. Typically scrollbars will allow the reader to survey all of a large file. In static outputs, the first few
lines are shown, given by the value of @rows, and lines are truncated according to the value of @cols.

Images as Data Files. Inside of a <datafile> place an <image> element with a @source attribute. As usual, this
attribute should be the name of an external file you provide. Most common formats are supported, but it is important
to use standard extensions, so the format can be discerned. Now this file may be explored programmatically by
opening the file using the name provided in @filename.

Keep the size of the image small, say 300–400 pixels in each direction. You may also supply the usual layout
controls, such as @width, and these will be consulted in the formation of output formats. Ideally, you should use a
width that scales the image to look something like its “native” resolution, since part of an image-processing exercise
may depend on this aspect of the input. html output uses a 600 pixel overall width, so a percentage can be computed
based on this parameter.

Notes on Data Files. Some notes that apply to each type of data file.

• Note that the name of the data file in a @source attribute need not have any resemblance to the new name
given to the file via the @filename attribute. In other words, the reader will never know (or care) what @source
was.

• Whenever the @source attribute is used, there needs to be an advance step performed by the CLI Section ?? or
the pretext/pretext script (Chapter ??) to generate an auxillary file (yes, a third file!) to aid the transistion
from an external file to a file that can be used by the reader in programs.

• In all cases, for an html build the contents of the data file live within an html page, as text for a text file, and
as a base-64 encoding for an image file. Hence for a non-Runestone build, any employing program must be
on the same page, and an author should think ahead about the granularity of how a project might be chunked
into pages (Section ??).

In a build for use on Runestone Academy, the file will be in the Runestone database and usuable throughout.

• Some <program> run entirely in your browser, on Runestone Academy or not. An example is when @language
is set to python. Other <program>, such as java will only execute when hosted on Runestone Academy.

In the latter case, you need to do just a bit more than try to open a data file in your program’s code. Include a
@datafile attribute on the <program> element that is a list (separated by commas or space) of the filenames
for files that will be used (these are the names given by the @filename attribute of the <datafile> element).

4.18 ☙ Tables and Tabulars ❧ 76

4.17 Figures

A <figure> is the most generic and flexible container for planar content. But be sure to read Section 3.13 so you are
aware of the other possibilities. A figure has a <caption>, which will typically render below the content (even if
authored early as metadata) and serves to provide an extra description of the content. So it may be several sentences
long. There is also a <title>, which is typically not rendered as part of the figure. Instead it is used for cross-
references, or in a list of figures, to identify the figure. So it should be very short and might just be a phrase, such as
“Life Cycle of a Salamander.”

An <image> is likely the most frequent content in a <figure>. But you may also place a <video>, <audio>,
<sidebyside>, or <sbsgroup>. Once completely implemented, an <interactive> is another possibility. (See Sec-
tion 4.23 for more about the side-by-side construction.)

A special situation is when a <figure> is a panel of a <sidebyside>, which is itself inside a <figure>. Then
the interior figure is subnumbered. For example, the exterior figure might be Figure 4.12, and if a panel of the
<sidebyside> is the second interior figure it will be Figure 4.12(b). For example,

<figure>
<caption>Salamanders at different life stages</caption>
<sidebyside>

<figure>
<caption>Hatchling</caption>
<image source="salamader-hatchling.jpg"/>

</figure>
<figure>

<caption>Juvenile</caption>
<image source="salamader-juvenile.jpg"/>

</figure>
<figure>

<caption>Adult</caption>
<image source="salamader-adult.jpg"/>

</figure>
</sidebyside>

</figure>

could result in the entire figure being Figure 4.12 and then the juvenile salamander photograph would be inside of
Figure 4.12(b).

4.18 Tables and Tabulars

A <table> is a container that houses a <tabular>, which is the actual rows and columns of table entries.
Note that <tabular> may be constructed using the LATEX Complex Table Editor¹ tool online and then exported

in PreTeXt syntax. This produces verbose PreTeXt syntax that is usually equivalent to much simpler PreTeXt syntax
once you understand the borders and alignment considerations below.

4.18.1 Tables
A <table> is similar to other blocks in PreTeXt (Section 4.2) and is most similar to a <figure>. It will earn a number,
which is likely to be a part of the text of a cross-reference pointing to the table. Rather than a <caption>, it will
have a <title>. The main difference is that the principal content must be a <tabular>. Only.

4.18.2 Tabular
A <tabular> is the actual headers, rows, and columns of a table. As discussed above, a typical use is to place it inside
a <table>, though it can be placed all by itself, typically in among a run of paragraphs.

¹www.latex-tables.com

http://www.latex-tables.com/

4.18 ☙ Tables and Tabulars ❧ 77

Fundamentally a <tabular> is a sequence of <row> and each <row> is a sequence of <cell>, which could also
be called “table entries.”

4.18.3 Table Cells
A given cell can span multiple columns, by providing the @colspan attribute with a value that is a positive number,
the cell will extend to occupy additional columns.

4.18.4 Table Rows
A <row> of a table is a sequence of <cell> elements. Each row should occupy the same number of cells, when
considering the @colspan, as discussed above.

To achieve column headers, you indicate that a row contains headers. Typically, the contents of every cell in this
row will then be rendered in bold, or some other style. The <row> element accepts a @header attribute with possible
values of no (the default), yes, or vertical. The latter is useful if space is at a premium (which always seems to
be the case with tables), and the cells of a column are narrow and the header is long. Note that only the first (top)
rows can be treated as column headers and these rows must be contiguous. If you think you need column headers
mid-tabular, maybe you really have two tables?

4.18.5 Table Columns
Prior to all of the <row> within a <tabular>, there may be a sequence of empty <col/> elements. Having these
is optional, but once there is one, then there needs to be as many as the number of columns of the table. These
elements do not have any content that appears in the table, but are used to hold attributes that influence the borders
or alignment of the cells within a column. These are described below.

So it should now be clear that, after much consideration, that we have chosen a “row first” approach to describing
a table.

To encourage good style, we only support row headers as the first column. So this is a property of the entire
<tabular>. So the attribute @row-headers on <tabular> can have values no and yes, with the former as default.
Note that “major” and “minor” row headers should be accomplished in the first column by using indentation for the
minor headers. Please make a feature request if you would find this useful.

4.18.6 Table Borders and Rules
You can view each cell of your table as having four borders. Or you can imagine rows and columns separated by
horizontal or vertical rules. These additions to your table do not change the arrangement of information into rows
and columns (a doubly-indexed data set), though you may think it makes the presentation clearer. But less is actually
more.

Best Practice 4.18.1 Vertical Rules in Tables. One of the goals of PreTeXt is to gently guide authors towards good
choices in the design of their documents, even if we do not claim to know it all ourselves. Take a close look at
Table 4.1.3. What’s missing? No vertical rules. Try living without them, you will not really miss them. If you
think you need to divide a table into two halves, maybe you really need two tables (and then see the “side-by-side”
capabilities, Section 4.23).

In the documentation for his excellent LATEX package, booktabs², Simon Fear gives two rules for what he calls
“formal tables”: (1) Never, ever use vertical rules, and (2) Never use double rules. We have resisted the temptation to
enforce the former and have provided an alternative to the second (three thicknesses). He refers to using tables for
layout as creating “tableau.” If you are finicky about the look of your work, the first three pages of the documentation
is recommended reading.

A given <cell> can have a border on its bottom edge, and on its right edge. This is accomplished with the
@bottom and @right attributes. The possible values are minor, medium, and major, which control thickness. (Not
every conversion can produce three distinct thicknesses, so this should be considered a hint to the conversion.) A
value of none is the default behavior when the attribute is not used, but can be given explicitly.

²www.ctan.org/pkg/booktabs

https://www.ctan.org/pkg/booktabs

4.18 ☙ Tables and Tabulars ❧ 78

How to get a left border on the first cell of a row? The <row> element allows a @left attribute which will put a
border on the left end of the row, which is also the left border of the first cell.

How to get a top border on a cell? Put a bottom border on the cell above it. But what if the cell is already in the
top row and has no cell above it? The relevant <col> element allows a @top attribute which will place the necessary
border on the top-row cell.

Borders and rules verge on presentation, so we are not concerned about which cell a border (or rule) belongs to.
So, generally @bottom and @right can be used in many places, and the exceptional @top and @bottom maybe used
to get the missing border n+ 1 for a vertical or horizontal sequence of n cells.

The attributes described for cells may also be used on <row>, <col>, and <tabular>. For example a thick hori-
zontal rule after two rows of headers could be accomplished with

<row header="yes">...</row>
<row header="yes" bottom="major">...</row>

We will not detail all the combinations that are possible, so experiment and you should be able to create any rational
look (and some irrational ones).

4.18.7 Table Cell Alignment
The horizontal alignment of the contents of a <cell> can be influenced by the @halign attribute with values left,
right, center, and for “paragraph cells,” justify. Similarly the @valign attribute will influence the vertical align-
ment through values top, middle, and bottom. Default alignments are left and middle.

To align the cells of an entire <row>, <col>, or <tabular> identically, place the relevant attribute on the relevant
element. Note that these choices can be overridden by different values on individual consituents.

4.18.8 Multi-line Cells
A cell of a table may contain more text that fits onto one line. If you know exactly where you want the line-breaks
to be, then structure the entire cell as a sequence of <line> elements.

Or, if you want the contents of a cell to look and feel more like a paragraph (or several), structure the cell
as a sequence of <p>, which can contain the usual content of a <p>, excepting “larger” content such as display
mathematics or lists. Now, in this case, you must constrain the width of the cell’s column, to force the line-breaking
necessary to render a paragraph as several lines. Use the relevant <col/> element, and specify a percentage of the
tabular’s overall width, like this:

<col width="40%"/>

A paragraph cell can be right-justified with the @halign attribute set to justify. But be aware that if the column is
skinny, this can lead to awkward inter-word spaces.

4.18.9 Breakable Tabulars
A <tabular> may be specified as breakable, inside of a <table> or not. Use the attribute @break set to yes. (The
default is no.) This only affects conversions to formats with page breaks, such as pdf. Usually the motivation will
be a <table> or <tabular> that is too long for a page, but even a shorter table can be allowed to page break.

As of 2022-07-28 this is effective for simple tables, but introduces some variations for more complex constructions.
This is implemented with the LATEX longtable package, which suggests it may take up to four passes with LATEX to
obtain the final version. It is also not effective for a <tabular> that is a side-by-side panel. Consult the sample article
for examples where more progress is necessary.

4.18.10 Table Philosophy
The Chicago Manual of Style [1, 13.1] says:

A table offers an excellent means of presenting a large number of individual similar facts so that they are
easy to scan and compare. A simple table can give information that would require several paragraphs

4.18 ☙ Tables and Tabulars ❧ 79

to present textually, and it can do so more clearly. … A table should be as simple as the material allows
and understandable on its own; even a reader unfamiliar with the material presented should be able to
make general sense of a table.

If you review the twenty tables presented in Chapter 13 of cmos, that are of the type we implement, you will notice
several things.

• Only the first column is ever used for row headings.

• Cells do not span multiple rows. (There is no analogue for @colspan.)

• Column headings appear at the top, other than cut-in heads, which have a very particular form. (We have not
implemented these, but would entertain a feature request.)

While our implementation allows for some presentational elements (borders, rules, alignment) our conversions
will presume your table hews to the purposes described by CMOS. In particular, it is not a device for spatial layout
of complex elements. You might find that the <sidebyside> and <sbsgroup> layout devices will suit that purpose
better (see Section 4.23).

Best Practice 4.18.2 Tables are Difficult. Width is always at a premium, and then when a <tabular> has more than
a few columns, the width becomes even more dear. When a <cell> has text that looks like a phrase or a sentence,
rather than numerical data or symbols, it can be even harder to pack it all in. A common example is a schedule of
talks at a small professional conference where each time slot (rows) might have two or three talks simultaneously in
parallel sessions (columns).

We offer paragraph cells which automatically break lines, but you need to specify a @width on the <col> as a
percentage to indicate where line-breaking happens. For manual line-breaking, a <cell> can be structured entirely
by <line> elements.

The next complication is that the LATEX used for pdf output tends to make columns as wide as necessary and will
not break lines without the devices mentioned in the previous paragraph. The html output can sometimes be a bit
more forgiving and flexible. So we suggest building the LATEX output first and getting that right, and then the html
is likely to follow along and not need much futher refinement.

In contrast to most of PreTeXt, you may need to experiment, refine your approach, iterate, and maybe do things
contrary to usual best practices elsewhere. For example, the clickables for urls and knowls might need to be short
and less-informative in order to save some width. Abbreviations, initialisms, and acronyms can also save some width.

4.18.11 Summary: Table Reference
Finally, we summarize the available options for a table with…a table. Because it would take too much text to describe
fully.

This table describes how to construct tables via the tabular element. The table element may be used to enclose
the raw table, so as to associate a title and get vertical separation with horizontal centering.

The tabular element contains a sequence of row elements, and must contain at least one. Each row contains a
sequence of cell elements and must have the same number in each row (acccounting for the use of the colspan
attribute). The contents of the cell elements are the text to appear in entries of the table.

A sequence of col elements may optionally be used. But if one appears, then there must be the right number for
the width of the table. They are empty elements always, and just carry information about their respective column.

Where the body of the table below has an entry, it means the attribute may be used on the element, and affects
the range of the tabular described by the element. Employment of an attribute on elements to the right in the table
will supersede use on elements to the left. Generally, every cell has right and bottom borders, but only cells at the
left side of the table have a left border and only cells across the top have a top border. Only one cell has four borders.

4.21 ☙ Sage ❧ 80

Table 4.18.3 Tabular Elements and Attributes (p = potential)

Attributes Elements Values
tabular col row cell ∗ = default

top × × none∗, minor, medium, major
left × × none∗, minor, medium, major
bottom × × × none∗, minor, medium, major
right × × × none∗, minor, medium, major
halign × × × × left∗, center, right, justify
halign p decimal, character
header × yes/vertical/no∗
row-headers × yes/no∗
valign × × top, middle∗, bottom
colspan × 1∗, positive integer
width × percentage
colors p p p p

4.19 Program Listings

A <listing> is really a specialized type of <figure>, whose purpose is to hold computer code. Just like a figure,
it has a <caption> and <title> which behave identically. However, the enclosed planar content is limited to a
<program> or <console> (see Section 4.15).

4.20 Named Lists

As mentioned above, it is not possible to have a list be the target of a cross-reference. Should an entire list be so
important that you need to point to it from elsewhere, then make it a named list by wrapping it in the <list> tag.

This element can begin with an optional <introduction>, then has a single, required list, which may be any of
the three types. It concludes with an optional <conclusion>. It can have an @xml:id attribute, which in a way is the
whole raison d’être for this construction. It will be numbered when rendered, and so also requires a <title>. You
might think of this as similar to a <table>—bits of information organized spatially, via indentation and line breaks.

Since this element associates a number, title, to an entire list, we call it a “named list”. What should we call a
list that is authored within a paragraph and cannot be the target of a cross-reference? We call it an anonymous list
when we want to make the distinction.

4.21 Sage

Until we can expand this section, get some ideas from Section 3.17. We will also collect a few items here, to be
cleaned-up later.

For online output formats, sometimes the output of a Sage command can be overwhelming, and a bit complicated
to parse. Many objects in Sage also have a LATEX representation, which can be used to create a superior output format
(for some purposes). Begin a cell with the “magic”:

%display latex

Experiment with the following Sage code on the next line

integral(x^9*cos(x), x)

Boom! Very nice. Try replacing latex with None, plain, ascii_art, or unicode_art.

4.23 ☙ Side-by-Side Panels ❧ 81

4.21.1 Sage Cell Server Design
The ability to execute, and edit, chunks of Sage code is provided by a distinct project, the Sage Cell Server¹. Sim-
plifying somewhat, the Sage code a reader sees (or has edited!) is shipped out to a running instance of Sage (on a
server somewhere) and the code is executed there. The results of that computation are shipped back to the reader for
display below the code.

Two implications of this design are

• It is not within your power to add additional packages for the supported languages.

• You cannot read a (data) file hosted on your project’s site.

Fortunately, there are workarounds.
If your code needs a Python package, or an R package, or similar, and it is a standard open source package, then

make a request on the Sage Cell² Google Group. Likely, it can be added/installed.
Unfortunately, the ability to read files anywhere on the internet was abused, so this capability had to be restricted

to a finite list of servers. These include DropBox³ and GitHub⁴ where you might find it convenient to place files
supporting your code. Note that for GitHub, you likely want to use a url which is a “raw” file such as for the
PreTeXt repository README⁵ file, written with Markdown.

4.22 Interactives

TODO: until then examine copious examples in the sample article.

4.23 Side-by-Side Panels

Documents, pages, and screens tend to run vertically from top to bottom. But sometimes you want to control
elements laid out horizontally. A <sidebyside> is designed to play this role. It is best thought of as a container,
enclosing panels, and specifying their layout. Examples include three images, all the same size and equally spaced.
Or a poem occupying two-thirds of the available width, with commentary adjacent in the remaining third. Or an
image next to a table. But the most common use may be a single image (with no caption, and hence no number),
whose width and horizontal placement are controlled by the layout.

See the schema for the exact items that are allowed in a <sidebyside>. To author, just place these items within
<sidebyside> in the order they should appear, left to right. Then you add attributes to the <sidebyside> element
to affect placement.

Instead of placing a @width attribute on each item, instead place this on the <sidebyside> element. A single
@width will use the same value for each panel. For different widths, use the plural form @widths and provide a
space-separated list of percentages. The default is to give each panel the same width, and as large as possible, which
will result in no gap between panels.

The margins can be specified with the @margins attribute, which if given as a single percentage will be used for
both the left and right sides. You may also specify asymmetric left and right margins with two percentages, separated
by a space, in the same attribute. An additional option is to use the value auto which will set each margin to half
of the (common) space between panels. This is also the default. In the case of a single panel, the left margin, right
margin, and panel width should all add up to 100%.

Once the widths and margins are known, any additional available width is used to create a common distance
separating panels. (Which is not possible when there is just a single panel.)

Independent of horizontal positioning, individual panels may be aligned vertically. The attribute is @valigns
and its value is a space-separated list of top, middle, and bottom. The singular version, @valign, is used to give
every panel the same alignment, using the same keywords. The default is to have every panel at the top.

¹sagecell.sagemath.org/
²groups.google.com/g/sage-cell
³www.dropbox.com
⁴github.com
⁵github.com/PreTeXtBook/pretext/raw/master/README.md

https://sagecell.sagemath.org/
https://groups.google.com/g/sage-cell
https://www.dropbox.com
https://github.com
https://github.com/PreTeXtBook/pretext/raw/master/README.md

4.24 ☙ Front Matter ❧ 82

We could give lots of examples, but instead it might be best to just experiment. Error-checking is very robust,
so it is hard to get it too wrong. OK, we will do just one to help explain. Suppose a <sidebyside> contains three
panels and has layout parameters given by

<sidebyside widths="20% 40% 25%" margins="auto" valign="middle">

Then there will be 15% of the width left to space out the panels. The two gaps are each 5% of the width, and the
remaining 5% is split between the margins at 2.5% each. And the vertical midlines of each panel are all aligned.

For a single panel with no attributes, the panel will occupy 100% of the width. A single panel with a specified
width will get equal (auto) margins, resulting in a centered panel.

Captioned items as panels deserve special mention. These will continue to be numbered consecutively, with
one exception. If you place a <sidebyside> inside of a <figure>, then the <figure> will be numbered, and the
captioned items inside the <sidebyside> will be sub-captioned. In other words, the second captioned panel of a
<sidebyside> inside Figure 5.2 would be referenced as Figure 5.2.b.

An <sbsgroup> (“side-by-side group”) contains only <sidebyside>, which are displayed in order. However, all
of the layout parameters allowed on a <sidebyside>may be used on an <sbsgroup>. This might allow a collection of
fifteen images to be laid out in three rows of five images each, with widths and spacing identical for each row because
the parameters are specified on the <sbsgroup> element. In this way, simple grids can be constructed. Note that
any layout parameters given on an enclosed <sidebyside> will take priority over those given on the <sbsgroup>.
Captioning behavior extends to an entire <sbsgroup>.

Since <sidebyside> and <sbsgroup> are containers they cannot be referenced and so do not have an @xml:id.
However, you can reference their individual contents if they are captioned, and you can reference an enclosing
<figure>.

Generally, a <sidebyside> or <sbsgroup> can be placed as a child of a division, or within various blocks, such
as <proof> for example. See the schema for (evolving) specifics.

It should be clear now that a <sidebyside> is more about presentation than most PreTeXt elements, though
there is some semantic information being conveyed by grouping the panels with one another.

4.24 Front Matter

A single <frontmatter> element can be placed early in your <book> or <article>, after some metadata, such as the
overall <title>. It is optional, but likely highly desirable. The following subsections describe the items that may be
employed within the <frontmatter>. Most are optional, and some may be repeated. An <article> differs in that
it must contain a <titlepage> and then may only contain an <abstract>. Generally, these will get default titles,
localized in the language of your document, but these defaults may also be replaced by giving a <title> element.
None of these divisions themselves is numbered, precluding any content within that is numbered. So, for example,
no <figure> may be included. But you could choose to include an <image>, perhaps within a <biography>.

If a component of the front matter cannot be numbered, how best to subdivide something like a <preface>? This
is a good use of the <paragraphs> element. It allows for a (minimal) title, but cannot be subdivided further. See the
later part of Section 4.6 for more about this exceptional element.

These elements must appear in your source in the order given below, and will appear in your ouput in the same
order, which is a generally accepted order used in the production of books. So, for example, even if you author an
<acknowledgement> between two <preface>, your output may (will?) place the Acknowledgement before the first
Preface.

(We have not yet described the contents of these various elements in full detail.)

4.24.1 (∗) Title Page
Required. Since the entire <frontmatter> is optional, we assume that the front matter at least includes the appear-
ance of the document’s overall <title>.

4.24.2 (∗) Abstract
Optional, and only available for an <article>.

4.25 ☙ (∗) Back Matter ❧ 83

4.24.3 (∗) Colophon
The front colophon. (There is also a back colophon, see Subsection 4.25.6). Sometimes this is also called the copyright
page.

4.24.4 (∗) Biographies
Multiple <biography> elements, one per author.

4.24.5 (∗) Dedication
A single <dedication> element, that might include multiple dedications (perhaps by different authors).

4.24.6 (∗) Acknowledgements
A single <acknowledgement> element (note spelling), that becomes a division, and so can contain paragraphs, lists,
etc. The Chicago Manual of Style [1, 1.52] suggests that if these are short, they may be contained in a preface.

4.24.7 (∗) Forewords
As of 2021-07-16 the <foreword> element is not fully implemented. Please make a feature request if you need it.

A <foreword> is written by somebody other than the author. The name of the writer of the foreword need to be
included—at the end is a good location.

4.24.8 (∗) Prefaces
Multiple prefaces are a distinct possibility, and in this case providing a different <title> for each would be essential.
Examples might include: “Preface to the Third Edition”, “How to Use this Book”, or “To the Student”. More ad-hoc
material, such as a translator’s note, can be handled as a preface.

Best Practice 4.24.1 Understand the Role of a Preface. Chicago Manual of Style [1, 1.49] begins with “Material
normally contained in an author’s preface includes reasons for undertaking the work, method of research, …” Note
that a preface is not introductory content and is not an introduction. It is written from the author’s point-of-view,
and may include information about why they are qualified to write on the topic of the book. If there are several
editions, the prefaces to the newer editions are placed first. See the related Best Practice ??.

4.25 (∗) Back Matter

4.25.1 (∗) Appendices
Automatic lists (Section 4.28) can appear anywhere, but an appendix is a very natural place to place one.

4.25.2 (∗) Glossary

4.25.3 (∗) References

4.25.4 (∗) Solutions

4.25.5 (∗) Index

4.25.6 (∗) Colophon
The back colophon, what most authors think of as the colophon. (There is also a front colophon, see Subsec-
tion 4.24.3).

4.26 ☙ Index ❧ 84

4.26 Index

Continuing our basic discussion from Section 3.23, we discuss some details of making and using index entries. We
will begin with how you procedurally author an index entry with PreTeXt syntax, and thenmove to general principles
about how to use these constructions to create an effective index. So these two subsections are intimately linked.

4.26.1 Syntax and Placement of Index Entries

Best Practice 4.26.1 Capitalization of Index Entries. The headings (entries) of an index are authored entirely
in lower-case, unless it is a proper noun (name, place, etc.) which would normally be capitalized in the middle
of a sentence. We are not able to provide any enforcement of this advice, nor any assistance. It is the author’s
responsibility to provide quality source material in this regard. We do sort entries so that an entry with an initial
capital letter arrives at the right location in the index.

Where you place an <idx> entry is critical. With LATEX output, you will get the traditional page number as a
locator in your index. With html output we can be more careful. We will look to see which sort of structure
contains the <idx>. Maybe it is an <example> or a <subsection>. If so, the index will contain a locator that is a
knowl of the example, or a link to the subsection. The distinction is the size of the object, we do not knowl divisions.
The exception is a paragraph (<p>) that is a child of a division, and then the locator is a knowl of the entire paragraph.
Remember that a knowl contains an “in-context” link which can take the reader to the original location of the content
in the knowl.

A lot happens in a PreTeXt paragraph, especially when producing html. Sometimes an <idx> can get in the
way. Our recommendation is to put <idx> entries between sentences, and not at the start or end of the paragraph.
They can be authored with each on their own line. If you do not need the specificity of a paragraph, then locate the
appropriate structure and author the <idx> right after the <title> (or where one would be).

A cross-reference in an index is a pointer to another index entry. These are rendered as “See” and “See also.”
You can add <see> and <seealso> elements within an <idx>, so long as it is structured with <h>. Then it is placed
after the last <h>. A “see” cross-reference is a direct pointer to another entry in the index. It cannot have a locator
as well. When you build the html output, we will recognize this situation and produce a warning. A “see also”
cross-reference is an additional pointer, and so it must have a locator to go with it (you will author two <idx> with
identical headings, the first without a <seealso> to create the locator, the second with the <seealso> to create
the cross-reference. Again, when you build the html output, we will recognize a <seealso> without a locator and
produce a warning.

Follow these directions and PreTeXt will format cross-references for you, in the style suggested by the Chicago
Manual of Style [1] for html output, and according to LATEX’s style for print and pdf.

(2019-03-04) We have consciously not said anything specific about what to place inside a <see> or <seealso>
element. At this writing, you need to supply the text. Of course, this is error-prone and you will need to consult
cmos for formatting guidance. But we have plans to do this the PreTeXt way. First, the ref/xml:idmechanism will
be used to automatically create the correct text for the cross-reference, both content and format. Second, these will
become live links in electronic formats.

Certain index entries do not sort very well, especially entries that begin with mathematical notation. Our first
advice is to avoid this situation, but sometimes it is necessary. The @sortby attribute on an <h> element can contain
simple text that will be used to override the content shown to the reader during the sorting of the index.

4.26.2 Advice on Indexing
An index is a navigational aid for your readers (and you). We do not assume that a reader remembers where anything
is, nor that the Table of Contents is a replacement for part of the index. Some readers of the index may not have
even read your book yet, and are looking to get a feel for the range of topics as part of the decision of whether or not
to read your book at all, or if it will be useful to have. It should be comprehensive, including everything substantive.

Indexing is a job for a skilled professional, and most authors produce poor indexes. The tips in this section will
help you avoid the most common pitfalls. We follow recommendations from the Chicago Manual of Style [1, Chapter
18], Indexing for Editors and Authors: A Practical Guide to Understanding Indexes [3], and Pilar Wyman of Wyman

http://www.wymanindexing.com/

4.26 ☙ Index ❧ 85

Indexing¹.

Terminology. The basic element of an index is an entry, which consists of a piece of information and its locator.
For example:

normal subgroup, 37

is an entry indicating that information about “normal subgroup” can be found on page 37. Indexes are (usually)
organized alphabetically, with amain heading aligned with the left margin, and progressively indented subheadings
below the main heading.

Often it is desirable to place the same locator under more than one heading, known as double posting. For
example, a desirable addition to the sample entry above is

subgroup, 28
normal, 37 .

An alternative to double posting is cross referencing, using see and see also. Typically cross references are used to
avoid repeating a large number of entries, or to direct the reader to related topics.

An index may start with a headnote giving advice about using the index. Typically a headnote is not necessary
unless the index has some unusual features.

Basic principles. The purpose of an index is to point the reader to information. Point to, not repeat. For example,
acronyms should be indexed at the location where they are defined, not at every place they appear, and it is not
necessary to define the acronym within the index. People and places should be indexed when information is given
about them, not every time they are mentioned.

A good index has multiple ways to find the same information. Being redundant is desirable, because it increases
the chance the reader finds what they seek in the first place they look.

Indexing is best done after the text has been written. Adding index entries while writing the text may seem to
be a labor-saving device, but if you are not an experienced indexer, those entries will only be a small fraction of the
final index.

Topics should be indexed in multiple ways. If a term is defined, you should also think of other words the reader
might search for. For example, you may define “limit point” and consistently use only that term, but an index entry
for “accumulation point” with a “see limit point” locator would be appropriate.

Use disambiguation to distinguish identical terms with different meanings. For example

isomorphism (of groups), 55
isomorphism (of rings), 123

Both of those entries should also be double posted under the main headings of “group” and “ring”, respectively. No
disambiguation is needed for those entries.

Singular or plural forms of nouns should reflect the language in the text. So if a chapter is titled “Mammals”, then
use a heading mammals. And if the chapter is titled “The Mammal Class”, then use a heading mammal.

An index is typically as long as 5% of the main text. With many figures, or other structures creating additional
whitespace, the percentage may be lower. If your primary output is online, length may not be an issue. For print,
there are strategies for pruning an index.

Once you have finished the text, and then finished the index, it is time for a thorough review of the index. There
will be places for consolidation, often due to using variants of particular words. Youmaywish to remove subheadings
which all appear within the range given in the heading. For example,

fish, 204-212
bass, 208-209
salmon, 210
trout, 207

could have all of its subheadings removed, especially if space is an issue.

¹www.wymanindexing.com/

http://www.wymanindexing.com/
http://www.wymanindexing.com/

4.28 ☙ Automatic Lists ❧ 86

Common pitfalls. Sometimes it takes less than one second to determine that an index is poor. If a quick glance
reveals that the index consists mostly of main headings with very few subheadings, then few readers will find it to
be useful. Double posting, which may mean more than literally two entries with the same locator, will help readers
find what they are looking for. Most of those entries will be in subheadings.

Another instantly recognizable problem is too many locators in one entry. This entry

asymptote, 37, 48

is probably fine. But once you have three or more locators in an entry, then your index may be improved by adding
some subheadings. If the locators in the above example refer separately to “horizontal” and “vertical”, then probably
two subheadings would be more useful than two undifferentiated locators in one entry.

An additional problem which can be seen at a glance if you know what to look for, is the absence of any main
headings with a large number of subheadings. On almost any subject there are topics which are addressed repeatedly.
This should be reflected in the structure of the index. For example, in a group theory textbook there should be
several entries under “group, examples”. In an introductory calculus book the index should help the reader locate
the derivative of many different elementary functions.

Index headings should be nouns, not adjectives. An adjective may be important, and you should use it, but it
should not be the entire content of a heading since it is not an idea by itself. But it may be a subheading. For example,
suppose you have a paragraph on “highland sheep.” Then both of the following should appear in your index, since
a reader might consult both locations.

highland sheep, 45

sheep
highland, 45

4.27 Notation

We continue the introduction at Section 3.23. A notation list, like an index, is a specialized collection of cross-
references. So some of the philosophy here applies equally well to the <idx> and <index-list> elements, and
vice-versa. (See Section 4.26.)

To generate a list of notation employed in a book or article, use the <notation-list/> element. This empty
element belongs in an <appendix>. Likely it is the only content, or you might include some preliminary material.
The title of the <appendix> is up to you and is not automatic.

Some authors like to make definitions inside of paragraphs, ideally using a <term> element. This is a natural
place for a <notation> element. So this approach gives an author a lot of flexibility in location.

Other authors like to make definitions using the <definition> element, since it creates a heading and num-
ber, allows a <title>, and can easily serve as the target of a cross-reference. So this is another good place for a
<notation> element. But now, associate it clearly with the <defintion> by placing it in the metadata, early on,
after the <title>. And not in some subsequent paragraph. The reason will be clear in just a bit.

How is a <notation> element constructed? It has two elements. The <usage> should be a sample piece of math-
ematics using the necessary symbols, and wrapped in a single <m> element. The second element is <description>
and should be a short phrase, or sentence-like material, decoding the sample usage, and may include <m> elements.
The reader sees nothing in the output at the location of the <notation> element.

The automatically-generated notation list is then a three-column table, in the order of appearance, with the
sample usage, the description, and a locator. For output derived from LATEX, such as print or pdf, the locator will
be the page number of wherever you placed the <notation> element. For html the locator is much better—it is
a knowl, for either a paragraph or for an entire definition. The latter possibility explains why it is better to place
the <notation> element inside a <definition>, if possible, rather than in a paragraph that is a constituent of a
<definition>.

4.28 Automatic Lists

Sometimes it is useful to have an automatic list of various elements of one kind in a book, other than the ones already
available in a PreTeXt document. The predefined ones include an index (see Section 4.26) and a list of notation

4.29 ☙ URLs and External References ❧ 87

(see Section 4.27). Examples of lists one might wish to create could include lists figures, computational listings, or
theorems.

There is a very flexible way to make a list of various blocks (or perhaps other items) in your text. Use an empty
<list-of/> element as a child of a division. A very natural use would be to create an <appendix> for the sole
purpose of holding one such list. This is why this feature is frequently used in the back matter. But you could place
an automatic list many other places.

We will illustrate with an example. Suppose you know your book has theoretical results only in <theorem> and
<lemma> elements. So, for example, you never use <corollary> elements. Then you could author

<appendix xml:id="appendix-list-results">
<title>List of Results</title>

<list-of elements="theorem lemma" divisions="chapter" empty="yes"/>
</appendix>

The result will be a link to every <theorem> and <lemma> in the entire book, using a clickable with its type, number
and title. See Appendix ?? for an example. In html output the clickables will usually be knowls, which is especially
handy. The list will be organized with the titles of the chapters as headings. The @divisions attribute can have
several types of divisions listed, such as both <chapter> and <section>. The @empty attribute set to yes indicates
that a division heading should be used even if there is nothing on the list contained within. The default for @empty
is no.

This feature is best used when the items in the list have been authored with titles, which greatly increases the
utility of the list for your reader. Review Best Practice 4.8.1 if this advice is new to you.

There is a @scope attribute, which should be the name of an element which is a division containing the location
of the <list-of> element. Then the list is restricted to items within the specified division. For example, if you have
the <list-of> inside a <subsection> built for this purpose, and you use @scope="section" then the list will have
all the items from throughout the section containing the list.

There are four types of exercises, based on their location: inline, divisional, worksheet, and reading ques-
tions. These may be specified inside @elements by the pseudo-elements: 'inlineexercise', 'divisionexercise',
'worksheetexercise', 'readingquestion'. (These are just strings meant for this purpose, and are not real PreTeXt
elements.)

There may be an argument for a @ref attribute that would behave similar to @scope. Make a feature request if
you need it?

4.29 URLs and External References

4.29.1 URLs to External Web Pages
The <url> element is used to point to external web pages, or other online resources (as distinct from other internal
portions of your current document, which is accomplished with the <xref/> element, Section 3.4). The @href
attribute is always necessary, as it contains the full and complete address of the external page or resource. Include
everything the url needs, such as the protocol, since this will be most reliable, and as you will see it never needs to
be visible. The element always allows, and then employs, a @visual attribute for a provided more-friendly version
of the address. Finally, the content of the element, which becomes the clickable text in electronic formats, can be
authored with the full range of PreTeXt markup generally available in a title or sentence. A typical use might look
like

<url href="https://example.com/" visual="example.com">Demo Site</url>

This will render as Demo Site¹. Note the automatic footnote providing the visual version in a monospace font. If a
<url> has content, and no @visual attribute is given, then the @href will be placed in a footnote, though there will
be an attempt to remove standard protocols. Compare

<url href="https://example.com/">Demo Site</url>

¹example.com

https://example.com/

4.29 ☙ URLs and External References ❧ 88

which will render as Demo Site² versus

<url href="mailto:nobody@example.com">Bouncing Email</url>

which will render as Bouncing Email³.
If you do not provide any content for a <url/> element, then the clickable text will be the actual url with a

preference for the (optional) @visual attribute, rather than themandatory @href attribute. This should be considered
as disruptive to the flow of your text, and so a poor alternative to the content version just discussed (see Best
Practice 4.29.1). But it might be a good choice in something like a list of interesting web sites. Whether or not
a simplified version of the address, via the @visual attribute, is desirable will depend on the application. As an
example, using the optional @visual attribute we have

<url href="https://example.com/" visual="example.com"/>

This will render as example.com. Note that there is no footnote since the visual version is already apparent.
If youwant to squelch the automatic footnote on a <url> element with content, you can explicitly set the @visual

attribute to an empty string as visual="". This signal will inhibit the automatic footnote. This should be a very rare
occurence, since you are denying readers of some formats from seeing even a hint of the actual url.

An extreme example of this behavior is a regular footnote which contains a url. Because an automatic footnote,
inside another footnote, becomes problematic in some conversions, we squelch the footnote-within-a-footnote. A
best practice here is to just list nearby a url, likely using the <c> element to get a monospace font.

A <url> inside a <title> has been accounted for, but should be used with caution.
As with the rest of PreTeXt we have taken care to handle all of the exceptional characters that might arise in a

<url>. So author normally, using the necessary keyboard characters, only taking care with the two xml characters,
< and &, which need escaping (see Section 3.14). Use percent-encoding (aka URL encoding) for the @href attribute,
if necesary, to include special characters, such as spaces. See Subsection 4.29.4 below for a common need for the
ampersand character, and a further caution about percent-encoding of urls.

Finally, for conversion to LATEX/PDF output it gets extremely tricky to handle all the various meanings of certain
escape characters in urls in more complicated contexts (such as tables, footnotes, and titles), so there may be some
special cases where the formatting is off or you get an error when compiling your LATEX. We have anticipated most
of these situations, but we always appreciate reports of missed cases.

4.29.2 Data URLs
A <dataurl> element is very similar to the <url> element just described. The purpose is to point to an actual file
that will be of use to your readers. What actual happens when a reader clicks on it is dependent on the format of the
PreTeXt output and that reader’s environment. Maybe the file will be downloaded, or maybe a particular application
will open the file. That part is out of our hands. Use an @href attribute in the same way as for <url>, and the content
and the @visual attribute also behave similarly.

The one key differerence is that you can also use a @source attribute in place of @href and point to a file that
you provide as part of your project (not unlike providing a photographic image via the <image> element). Place the
file in your collection of external files (see Section ??) and provide the path to your file from below the directory of
external files in the @source attribute. For html output, PreTeXt will do the rest. For more static formats, you can
set a base url (see Subsection ??) and you will get a complete url that points to the instance of your file hosted with
the rest of your html output.

Notice that this element provides limited functionality, at best just a hyperlink to a file. For data files that you
want a reader’s in-browser computer program to process, read about the <datafile> element at Section 4.16.

4.29.3 Visual URLs
By a visual URLwemean a version of a url that is simpler than the “real” url, but that provides enough information
that a reader can type the url into some other device with a minimum of effort, and with success. Consider that
your project may someday be a print (hardcopy) book, or that your project will be converted to braille for a blind
reader. These are some ideas about making a url simpler. We welcome more ideas.

²example.com/
³mailto:nobody@example.com

https://example.com/
mailto:nobody@example.com
https://example.com/

4.30 ☙ Video ❧ 89

• Remove standard/default protocols like http:// and https:// which most browsers will furnish in their
absence.

• Sites like StackExchange⁴ list posts with a long identifying number, followed by something that looks like the
title. In practice, the number is enough.

• Experiment with dropping a trailing slash—they are frequently unnecessary.

• Often a leading www. in a domain name is not necessary.

• Try providing just a domain name in place of a top-level landing page, it will often redirect to a longer url.

• You could use a URL shortener⁵, though some thought should be given to its longevity⁶. Will you remember
where your short urls point once they are no longer functional. Safer to have your long urls in an @href in
your source, and use PreTeXt to make them friendlier.

Best Practice 4.29.1 Craft URLs Carefully. Your writing will be smoother, and easier on your readers, if you do
not interrupt a sentence with a long url, unless somehow it is really of interest and relevant right there. So provide
content (the “clickable” text) when you use the <url> element (rather than an empty <url/>). This obligates you
to provide a @visual attribute, which feels a little like a tedious exercise. But this will be very welcome to some of
your readers, those who are unable or prefer not to use electronic formats. Just above (Subsection 4.29.3), we provide
suggestions for crafting these to be more pleasing, but still useful, versions of urls.

4.29.4 Characters in URLs
A url can have a query string, which has a list of parameters following a question-mark. The parameters are
separated by ampersands (&), which will need to be escaped, so as to not confuse the xml processor. So use &
anywhere the ampersand character is necessary, such as a @source attribute, or a monospace version of a url
achieved with a <c> element. Also, the question-mark character should not be url-encoded (%3F) (despite advice
just given above), so if necessary edit it to be the actual character. General advice about exceptional characters in
xml source can be found in Section 3.14.

4.30 Video

A video is a natural way to enhance a document when rendered in an electronic format, such as html web pages. It
might be additional information that is hard to communicate with text (marine invertebrates swimming), a lecture
or presentation that augments your text, or even some artistic work, such as a symphony legally hosted on YouTube,
when you could never hope to get copyright clearance yourself.

PreTeXt supports videos you own and distribute with your source, videos shared openly on the Internet via stable
urls, and videos available on YouTube. Go straight to to the end of this section to see how easy it is to incorporate
a YouTube video.

HTML5 web browsers are able to play video files in three formats, summarized in the following table.

Table 4.30.1 HTML5 video formats

Format Extension Reference
Ogg, Theora .ogg Free and open, Wikipedia¹
WebM .webm Royalty-free, Wikipedia²
MPEG-4 .mp4 Patent encumbered, Wikipedia³

⁴stackexchange.com
⁵https://w.wiki/4QA
⁶https://w.wiki/4eEM
¹en.wikipedia.org/wiki/Ogg
²en.wikipedia.org/wiki/WebM
³en.wikipedia.org/wiki/MPEG-4_Part_14

https://stackexchange.com/
https://en.wikipedia.org/wiki/Wikipedia:URLShortener
https://en.wikipedia.org/wiki/Google_URL_Shortener
https://en.wikipedia.org/wiki/Ogg
https://en.wikipedia.org/wiki/WebM
https://en.wikipedia.org/wiki/MPEG-4_Part_14

4.30 ☙ Video ❧ 90

4.30.1 Video Element
The <video> element is used to embed a video in output formed from html. Subsections below describe the dif-
ferent ways to indicate the source of the video. The video may be placed inside a <figure> or can be a panel of
a <sidebyside>. The former will have a caption, be numbered, and hence can be the target of a cross-reference
(<xref>). The latter is anonymous, but allows for horizontal layout, and combinations with other panels.

Size is controlled by a @width attribute expressed as a percentage (on the <video> element when used in a figure,
or as part of the <sidebyside> layout parameters). Height is controlled by giving the aspect ratiowith the @aspect
attribute on the <video> element. The value can be a ratio expressed like 4:3 or a decimal number computed from
the width divided by the height, such as 1.333. The default for videos is a 16:9 aspect ratio, which is very common,
so you may not need to specify this attribute.

Options include specifying a @start and an @end in seconds as integers (no units) if you only want to highlight
a key portion of a video. The @play-at attribute can take the following values

embed Play in place (the default action).

popout Play in new window or tab, at 150% width.

select Provide the reader the choice of the other two options.

In an educational setting, sometimes the preview images provided by YouTube can be distracting, or for an
author-provided video you may wish to provide your own preview image. The @preview attribute can take on the
following values

generic PreTeXt supplies a Play-button image.

default Whatever the video playback provides. This is identical to simply not including @attribute at all

Path to an image file
Typically, this will be a relative path, starting with images/. This image will be used as preview for the
online version and the print version.

4.30.2 Author-Provided Videos
If you own and possess your video content, then you can distribute it with your PreTeXt source, and it can be hosted
as part of your html output. Then the @source should be a relative file name that points to the file containing the
video. If you are able to provide more than one of the three formats in Table 4.30.1, then you can provide the filename
without an extension. If a browser cannot play one format, it may be able to play another. PreTeXt will write the
code to make that happen, preferentially in the order of the table (more open formats first!). In other words, you can
provide files in more than one format and increase the likelihood that a reader’s browser will find a format it can
playback.

4.30.3 Network-Hosted Videos
If a video is shared openly on the Internet, you can simply provide the full url for the @source attribute. All the
other attributes are the same as for the author-provided case, above. Read Subsection 4.29.4 for some considerations
when authoring a url, since there are a few gotchas.

You can frequently discover the url of a video by first playing it, and then using a context menu (e.g. via a right-
click) to reveal an option to copy the video’s location. However, note that there are various techniques sites use to
make such a url temporary, or otherwise unusable. So do some research about potential uses and test carefully. Our
example below is provided from a United States government site.

	Preface
	Introduction
	Why PreTeXt?
	Getting Started Tutorial

	Author's Guide
	Overview of Features
	Topics

