
PreTeXt RELAX-NG Schema
Robert A. Beezer

Department of Mathematics and Computer Science
University of Puget Sound
Tacoma, Washington, USA

beezer@pugetsound.edu

July 1, 2025

Contents
1 Start Elements 2
2 Gross Structure 2
3 Document Types 3
4 Document Structure 3
5 Lightweight Divisions 6
6 Specialized Divisions. 7
7 Solutions (experimental) 8
8 Worksheets (experimental) 8
9 Paragraphs . 12
10 Mathematics 20
11 Mathematics (experimental) 21
12 Blocks . 22
13 Introductions, Conclusions, and Headnotes 23
14 References . 24
15 Objectives . 26
16 Block Quotes 26
17 Verbatim Text 27
18 Lists . 29
19 Definitions . 29
20 Theorems, And Other Results 30
21 Proof-like (experimental) 30
22 Axioms and Other Mathematical Statements 31
23 Projects and Activities 31
24 Remarks and Other Comments 32
25 Computations and Technology 32
26 Asides . 32
27 Assemblages. 33
28 Figures, Tables, Listings and Named Lists 33
29 Figure (experimental) 35
30 Side-By-Side Layout 35
31 Images and Graphics 37
32 Sage Code . 39
33 Legacy Interactive Elements 39
34 Interactive Elements (experimental) 39
35 Audio and Video 41
36 Poetry . 42

mailto:beezer@pugetsound.edu

37 Exercises . 43
38 Exercises (experimental) 44
39 Bibliography 47
40 Glossary . 48
41 Examples and Questions 48
42 WeBWorK Exercises. 49
43 Literate Programming 50
44 Frequently Used 51
45 Miscellaneous 54
46 Organizational Devices 54
47 Front Matter 55
48 Front matter (experimental) 58
49 Contributors 59
50 Back Matter. 59
51 Document Information 60
52 Document Information (experimental) 63
53 Hierarchical Structure 63
54 Development Schema 64

A Fragments . 65

2

This is a literate programming version of the relax-ng schema for Pre-
TeXt. As such, it is used to generate the relax-ng compact syntax version
(pretext.rnc) and other versions are derived from the compact version with
standard tools.

We intend this to be helpful for both authors and implementers. The
schema is the contract between authors and implementers. If an author’s
source validates against the schema, then an implementer’s conversion should
render the content accurately, or warn about why it cannot. That said, it is
still a work in progress:

• New features are not added until they are reasonably stable. Validating
the sample article can be a good way to see what these are.

• Even for stable features, the schema will sometimes lag behind the code.

• There will be other inaccuracies here, so reports or pull requests are
welcome.

The relax-ng syntax is built on patterns, which describe how xml ele-
ments and attributes may be combined. It begins with a start pattern. Pat-
terns separated by commas must appear in that order. Elements separated by
a vertical bar represent a choice. Parentheses are used for grouping. Braces are
basic syntax, reminiscent of the syntax for Java. An equals sign is assignment
and |= is a continuation of an assignment. Finally, optional and/or multiple
occurrences can be specified with modifiers:

? Zero or one. Optional, at most one.
* Zero or more. Optional, with no limit.
+ One or more. Required, with no limit.

Appendix A contains a list of all the fragments described here, in order of
appearance, and may be useful if you are looking for some particular topic,
element, or attribute.

1 Start Elements
To support modular source files, we specify which elements can naturally be
the root of a fragment file in a PreTeXt document. These include the pretext
element itself, as well as most divisions. All of these are defined as elements
later in the schema.

〈1 Start elements〉 ≡

start = PretextRoot | DocInfo | Part | Chapter | Section | Subsection | Subsubsection | Paragraphs | ReadingQuestions | Exercises | Subexercises | Solutions | BookFrontMatter | ArticleFrontMatter | BookBackMatter | ArticleBackMatter | Preface | Acknowledgement | ArticleAppendix | BookAppendix | IndexDivision | References | Glossary | Figure | WebWork

2 Gross Structure
A PreTeXt document is always a single pretext element below the root. There
are two divisions, a docinfo, which is a database of sorts about the document,
along with a sibling element that indicates the type of the document and
contains all the content.

〈2 Gross structure〉 ≡

3

PretextRoot =
element pretext {

XMLLang?,
DocInfo?,
(Book | Article | Letter | Memorandum)

}

3 Document Types
letter and memo elements are not documented.
〈3 Document types〉 ≡

Article =
element article {

MetaDataLinedSubtitle,
ArticleFrontMatter?,
(

(
Objectives?,
(BlockDivision | Paragraphs)+,
(ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
Section,
(Section | ReadingQuestions | Exercises |
Solutions | References | Glossary)*,

(Outcomes? & ConclusionDivision?),
ArticleBackMatter?

)
)

}
Book =

Here is what a book looks like.
element book {

MetaDataLinedSubtitle,
BookFrontMatter?,
(Part+ | Chapter+),
BookBackMatter?

}
Letter =

element letter {empty}
Memorandum =

element memo {empty}

4 Document Structure
A document is typically divided into sections. But we reserve the word section
for one very specific type of division. To avoid confusion, we speak generically

4

of divisions. So, for example, a section is a division of a chapter. Here we
list all of the possible divisions, even if they are not available in each document
type.

An appendix looks like a chapter of a book, with the option to have a
notation-list as its entire contents. It is possible this is not the best structure
for an article, which might best be divided by subsection.

There are several things to note (expand this): always a title, dead-end
with blocks, or subdivide with optional intro and conclusion.

〈4 Divisions〉 ≡

Part =
element part {

MetaDataLinedTitle, Chapter+
}

Chapter =
element chapter {

MetaDataLinedTitle,
AuthorByline*,
(

(
Objectives?,
(BlockDivision | Paragraphs)+,
(ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
Section,
(Section | ReadingQuestions | Exercises |
Solutions | References | Glossary)*,

(Outcomes? & ConclusionDivision?)
)

)
}

Section =
element section {

MetaDataLinedTitle,
AuthorByline*,
(

(
Objectives?,
(BlockDivision | Paragraphs)+,
(ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
Subsection,
(Subsection | ReadingQuestions | Exercises |

5

Solutions | References | Glossary)*,
(Outcomes? & ConclusionDivision?)

)
)

}
Subsection =

element subsection {
MetaDataAltTitle,
AuthorByline*,
(

(
Objectives?,
(BlockDivision | Paragraphs)+,
(ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
Subsubsection,
(Subsubsection | ReadingQuestions | Exercises |
Solutions | References | Glossary)*,

(Outcomes? & ConclusionDivision?)
)

)
}

Subsubsection =
element subsubsection {

MetaDataAltTitle,
AuthorByline*,
Objectives?,
(BlockDivision | Paragraphs)+,
(ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),
Outcomes?

}
ArticleAppendix =

element appendix {
MetaDataAltTitle,
AuthorByline*,
(

(
Objectives?,
(BlockDivision | Paragraphs | NotationList)+,
(ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
Subsection,
(Subsection | ReadingQuestions | Exercises |

6

Solutions | References | Glossary)*,
(Outcomes? & ConclusionDivision?)

)
)

}
BookAppendix =

element appendix {
MetaDataAltTitle,
AuthorByline*,
(

(
Objectives?,
(BlockDivision | Paragraphs | NotationList)+,
(ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
Section,
(Section | ReadingQuestions | Exercises | Solutions | References | Glossary)*,
(Outcomes? & ConclusionDivision?)

)
)

}
IndexDivision =

element index {
MetaDataAltTitleOptional,
IndexList

}

5 Lightweight Divisions
The paragraphs element, which is not to be confused with a real paragraph
as implemented by the p element, is an exceptional type of division (both in
design and utility). It must have a title, can appear anywhere within any
of the divisions, cannot be further subdivided, and is not ever numbered. Its
contents are conceptually a run of paragraphs, but as described here allow
much more than that.

It is especially useful in a short document (like a class handout, letter,
memorandum, or short proposal) where numbered divisions might feel like
overkill.

The NoNumber variant allows for light-weight sectioning of un-numbered
divisions, such as a Preface.

〈5 Paragraphs division〉 ≡

Paragraphs =
element paragraphs {

MetaDataTitle,
Index*,
BlockDivision+

7

}
ParagraphsNoNumber =

element paragraphs {
MetaDataTitle,
Index*,
BlockStatementNoCaption+

}

6 Specialized Divisions
We add specialized divisions, which may appear within any of the above divi-
sions. Titles will be provided as defaults.

〈6 Specialized divisions〉 ≡

ReadingQuestions =
element reading-questions {

MetaDataAltTitleOptional,
IntroductionDivision?,
Exercise+,
ConclusionDivision?

}
Exercises =

element exercises {
MetaDataAltTitleOptional,
IntroductionDivision?,
(

(Exercise | ExerciseGroup)+ |
Subexercises+

),
ConclusionDivision?

}
Subexercises =

element subexercises {
MetaDataAltTitleOptional,
IntroductionDivision?,
(Exercise | ExerciseGroup)+,
ConclusionDivision?

}
Solutions =

element solutions {
MetaDataAltTitleOptional,
attribute inline {text}?,
attribute divisional {text}?,
attribute project {text}?,
attribute admit {"all"|"odd"|"even"}?,
IntroductionDivision?,
ConclusionDivision?

}
References =

element references {
MetaDataAltTitleOptional,
IntroductionDivision?,

8

BibliographyItem+,
ConclusionDivision?

}
Glossary =

element glossary {
MetaDataAltTitleOptional,
HeadNote?,
GlossaryItem+

}

7 Solutions (experimental)
The solutions division can now have additional attributes: @scope, @reading,
and @worksheet. We collect these three here.

〈7 Solutions (experimental)〉 ≡

Solutions |=
element solutions {

MetaDataAltTitleOptional,
attribute inline {text}?,
attribute divisional {text}?,
attribute project {text}?,
attribute worksheet {text}?,
attribute reading {text}?,
attribute scope {text}?,
attribute admit {"all"|"odd"|"even"}?,
IntroductionDivision?,
ConclusionDivision?

}

8 Worksheets (experimental)
A worksheet is a specialized division, allowing for some additional control of
spacing, to allow for workspace.

The attributes on a worksheet include margin information to control layout.
Inside a worksheet we can have either a number of <page> elements that holding
the content or just the content itself.

The contents of a worksheet can include the same blocks as a division,
namely BlockDivision.

〈8 Worksheets (experimental)〉 ≡

WorksheetAttributes =
attribute margin { text }?,
attribute top { text }?,
attribute bottom { text }?,
attribute right { text }?,
attribute left { text }?

WorksheetBlock =
BlockStatement | Remark | Computation | Theorem | Proof | Definition |

9

Axiom | Example | WorksheetExercise | Project |
Poem | Assemblage | ListGenerator | Fragment |
WorksheetSideBySide

Allow exercise in sidebyside
WorksheetSideBySide =

element sidebyside {
SidebySideAttributes,
(

Figure |
Poem |
Tabular |
Image |
Video |
Program |
Console |
Paragraph |
Preformatted |
List |
Stack |
WorksheetExercise |
WorksheetTask

)+
}

Exercises and tasks can have workspace if they don't contain additional tasks:
WorksheetExercise =

element exercise {
MetaDataTitleOptional,
attribute number {text}?,
attribute workspace {text}?,
(
ExerciseBody |
(StatementExercise, Hint*, Answer*, Solution*) |
(IntroductionText?, WebWork, ConclusionText?)
)

}
WorksheetExercise |=

element exercise {
MetaDataTitleOptional,
attribute number {text}?,
attribute workspace {text}?,
(IntroductionStatement?, WorksheetTask+, ConclusionStatement?)

}
WorksheetTask =

element task {
MetaDataTitleOptional,
attribute workspace {text}?,
(

BlockStatement+ |
(Statement, Hint*, Answer*, Solution*)

)
}

WorksheetTask |=
element task {

MetaDataTitleOptional,

10

attribute workspace {text}?,
(IntroductionStatement?, WorksheetTask+, ConclusionStatement?)

}
Main worksheet definition
Worksheet =

element worksheet {
WorksheetAttributes,
MetaDataAltTitleOptional,
(Objectives? & IntroductionDivision?),
(
element page {WorksheetBlock+|empty}+ | WorksheetBlock+),
(Outcomes? & ConclusionDivision?)

}

Insert worksheets into divisions (merge with division when adopted)
Chapter |=

element chapter {
MetaDataLinedTitle,
AuthorByline*,
(

(
Objectives?,
(BlockDivision | Paragraphs)+,
(Worksheet? & ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
(Section | Worksheet),
(Section | Worksheet | ReadingQuestions | Exercises |
Solutions | References | Glossary)*,

(Outcomes? & ConclusionDivision?)
)

)
}

Section |=
element section {

MetaDataLinedTitle,
AuthorByline*,
(

(
Objectives?,
(BlockDivision | Paragraphs)+,
(Worksheet? & ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
(Subsection | Worksheet),
(Subsection | Worksheet | ReadingQuestions | Exercises |

11

Solutions | References | Glossary)*,
(Outcomes? & ConclusionDivision?)

)
)

}
Subsection |=

element subsection {
MetaDataAltTitle,
AuthorByline*,
(

(
Objectives?,
(BlockDivision | Paragraphs)+,
(Worksheet? & ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
(Subsubsection | Worksheet),
(Subsubsection | Worksheet | ReadingQuestions | Exercises |
Solutions | References | Glossary)*,

(Outcomes? & ConclusionDivision?)
)

)
}

Subsubsection |=
element subsubsection {

MetaDataAltTitle,
AuthorByline*,
Objectives?,
(BlockDivision | Paragraphs)+,
(Worksheet? & ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),
Outcomes?

}
ArticleAppendix |=

element appendix {
MetaDataAltTitle,
AuthorByline*,
(

(
Objectives?,
(BlockDivision | Paragraphs | NotationList)+,
(Worksheet? & ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
(Subsection | Worksheet),
(Subsection | Worksheet | ReadingQuestions | Exercises |

12

Solutions | References | Glossary)*,
(Outcomes? & ConclusionDivision?)

)
)

}
BookAppendix |=

element appendix {
MetaDataAltTitle,
AuthorByline*,
(

(
Objectives?,
(BlockDivision | Paragraphs | NotationList)+,
(Worksheet? & ReadingQuestions? & Exercises? &
Solutions? & References? & Glossary?),

Outcomes?
)

|
(

(Objectives? & IntroductionDivision?),
(Section | Worksheet),
(Section | Worksheet | ReadingQuestions | Exercises | Solutions | References | Glossary)*,
(Outcomes? & ConclusionDivision?)

)
)

}

9 Paragraphs
Most PreTeXt elements are about delineating structure. What you actually
write happens in very few places. Principally paragraphs, but also titles, cap-
tions, index headings, and other short bursts. The shorter the burst, the more
likely the text will be recycled in other places (Table of Contents, List of Fig-
ures, or Index perhaps). And the more text gets re-purposed, the more care
we need to take with its contents.

Simple text is simply runs of characters, some of which is accomplished
with empty elements. This is used for names of people, etc. It should not be
confused with the RELAX-NG keyword text which matches runs of (Unicode)
characters, with no intervening markup. So the latter is used for things like
urls, internal identifiers, configuration parameters, and so on.

Short text is used for titles, subtitles, names, index headings, and so on.
It allows a variety of characters, font styling, groupings, and convenience con-
structions. It does not allow for references, nor anything that typographically
requires more than the linearity of a sentence. In other words, no lists, no im-
ages, no tables, no displayed equations. Because of the potential for movement,
we also do not include footnotes within short text.

Long text is everything that is short text, but also allows for references,
both external (internet urls) and internal (cross-references). It is used for the
content of footnotes and captions. The WeBWorK variant allows for variables
in inline mathematics.

〈9 Running text〉 ≡

13

TextSimple = mixed {
Character* }

TextShort = mixed { (
Character |
Generator |
Verbatim |
Group |
MathInline |
Music)* }

TextLong = mixed { (
Character |
Generator |
Verbatim |
Group |
MathInline |
Music |
Reference |
WWVariable)* }

A paragraph is a key bottleneck between structure and prose. You can use a
variety of constructs in a paragraph, and you may use a paragraph in many
places. So the name of the element is very simple, just a p. Now you can include
footnotes, display mathematics, display verbatim text, and lists. Note that a
list can only occur in a paragraph, so to make nested lists you must structure
a list item of the exterior list with a paragraph to contain the interior list. A
paragraph can contain some metadata, like index entries and mathematical
notation. It does not have a title, nor is it ever numbered. It can be the target
of a cross-reference, but only with some care.

A lined paragraph is a variant, for use when the line-by-line structure
is necessary. The WeBWorK variant of a p element allows for using the var
element as an answer blank or generated content, possibly inside mathematics,
and possibly inside lists.

Note: A paragraph effectively could have the MetaDataTarget pattern, ex-
cept that we allow index elements (<idx>) to go anywhere within the para-
graph.
〈10 Paragraphs〉 ≡

TextParagraph = mixed { (
Character |
Generator |
Verbatim |
Group |
WWVariable |
MathInline |
Music |
Reference |
CodeDisplay |
MathDisplay |
List |
Footnote |
Notation |
Index)* }

Paragraph =
element p {

14

UniqueID?,
LabelID?,
Component?,
TextParagraph

}
ParagraphLined =

element p {
UniqueID?,
LabelID?,
Component?,
element line {TextShort}+

}

Fundamentally PreTeXt allows for conversion to other markup languages, such
as LATEX or html, and of course xml is a syntax for designing a markup
vocabulary. As such, certain characters traditionally found on keyboards have
been co-opted for special purposes. And once you actually want one of those
special characters, you need an escape character to indicate a “normal” use.
For these reasons, certain characters have empty elements to represent them.

Special characters for xml are the ampersand, less than, greater than, single
quote and double quote: &, <, >, ', ". The ampersand is the escape character
for xml. In practice, the first two characters are the most important, since
processing of your xml will be confused by any attempt to use them directly.
So in regular text (not mathematics, not verbatim), always use the the escaped
versions: &, <, and perhaps >.

See below for elements that can be used to form groupings with left and
right delimiters. For example, a simple quotation should use a left double quote
and a right double quote, and these characters should look different (so-called
smart quotes). Notice that a keyboard only has a single dumb quote. If you
need these characters in isolation (i.e., not in pairs), these elements are the
best way to ensure you get what you want in all possible conversions. Note
that left and right braces , {, } (“curly brackets”); brackets, [,]; may be
used directly. To create individual, left or right, create angle brackets us the
elements here, not the keyboard characters (which are different).

〈11 Delimiter characters〉 ≡

Character =
element lsq {empty} |
element rsq {empty} |
element rq {empty} |
element lq {empty} |
element ldblbracket {empty} |
element rdblbracket {empty} |
element langle {empty}|
element rangle {empty}

A space is a space. But sometimes you want a space between two associated
items which will not get split across two lines (e.g., Chapter 23). An element
will create a non-breaking space using the right technique for the conversion
at hand.

There is a variety of dashes of various lengths. Use the keyboard character
for a hyphen, use an ndash to separate a range of numbers or dates, and
use an mdash as punctuation within a sentence to isolate a clause. These

15

are implemented differently for different conversions, so their use is strongly
encouraged.

〈12 Dash characters〉 ≡

Character |=
element nbsp {empty} |
element ndash {empty} |
element mdash {empty}

We define a few characters to help with simple arithmetic expressions authored
within regular text. (Perhaps you are writing a novel with PreTeXt.) These are
for simple uses in regular text, not for actual mathematics, which is described
later. The solidus is slightly different from the slash found on a keyboard and
is used for fractions and ratios. The <minus/> is for subtraction and negation,
and is not a hyphen or dash. An obelus is better known as a division sign.
<degree/>, <prime/>, and <dblprime/> are designed for specifying coordinates
in degrees, minutes, and seconds. Use the unambiguous + keyboard character
for addition.

〈13 Arithmetic characters〉 ≡

Character |=
element minus {empty} |
element times {empty} |
element solidus {empty} |
element obelus {empty} |
element plusminus {empty} |
element degree {empty} |
element prime {empty} |
element dblprime {empty}

The following are largely conveniences. They are typically not available on
keyboards, and their implementations for various conversions can involve some
subtleties. Again, their use is encouraged for the best quality output.

〈14 Exotic characters〉 ≡

CopyrightCharacter =
element copyright {empty}

Character |=
element ellipsis {empty} |
element midpoint {empty} |
element swungdash {empty} |
element permille {empty} |
element pilcrow {empty} |
element section-mark {empty} |
element copyleft {empty} |
CopyrightCharacter |
element registered {empty} |
element trademark {empty} |
element phonomark {empty} |
element servicemark {empty}

16

Icons are available through a @name attribute, which is meant to usually be more
semantic than just a description of the picture, though that may sometimes
be the case. These are intended for use when describing elements of computer
interfaces. Icons which are decorative should be supplied as part of styling, not
as part of the source language.
〈15 Icon characters〉 ≡

Character |=
element icon {

attribute name {text}
}

The <kbd> element will produce something akin to a calculator key or a key-
board key. It may have (simple) content, which will be reproduced as the label
of the key, or it may have a @name attribute which describes a key that looks
more like a graphic, such as an arrow key.
〈16 Keyboard characters〉 ≡

Character |=
element kbd {

(text | attribute name {text})
}

We support musical notation as if they were characters: accidentals, scale
degrees, notes, and chords. Implementation of these is about as complicated as
inline mathematical notation, hence they have identical rules about placement.
〈17 Music characters〉 ≡

MusicFlat =
element flat {empty}

MusicSharp =
element sharp {empty}

Music =
element doublesharp {empty} |
MusicSharp |
element natural {empty} |
MusicFlat |
element doubleflat {empty} |
element scaledeg {"0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"|"10"} |
element timesignature {

attribute top {text},
attribute bottom {text}

} |
element n {

attribute pc {
"A"|"B"|"C"|"D"|"E"|"F"|"G"|"a"|"b"|"c"|"d"|"e"|"f"|"g"|
"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"|"10"

},
attribute acc {"doublesharp"|"sharp"|"flat"|"doubleflat"}?,
attribute octave {"1"|"2"|"3"|"4"|"5"}?

} |
element chord {

17

attribute root {text}?,
attribute mode {text}?,
attribute bps {text}?,
attribute bass {text}?,
attribute suspended {"yes"|"no"}?,
attribute parentheses {"yes"|"no"}?,
element alteration {

(TextSimple |
MusicSharp |
MusicFlat)*

}*
}

〈18 Characters〉 ≡
〈Dash characters 12 [15]〉
〈Delimiter characters 11 [14]〉
〈Arithmetic characters 13 [15]〉
〈Exotic characters 14 [15]〉
〈Icon characters 15 [16]〉
〈Keyboard characters 16 [16]〉
〈Music characters 17 [16]〉
There are empty elements to generate certain items, like the date, or names of
commonly referenced tools, such as PreTeXt itself. These include some com-
mon Latin abbreviations, for the purpose of handling the periods properly
in conversions to LATEX.

〈19 Text generators〉 ≡

Generator =
element today {empty} |
element timeofday {empty} |
element tex {empty} |
element latex {empty} |
element xetex {empty} |
element xelatex {empty} |
element pretext {empty} |
element prefigure {empty} |
element webwork {empty} |
element ad {empty} |
element am {empty} |
element bc {empty} |
element ca {empty} |
element eg {empty} |
element etal {empty} |
element etc {empty} |
element ie {empty} |
element nb {empty} |
element pm {empty} |
element ps {empty} |
element vs {empty} |
element viz {empty}

A fillin blank is not really a character, but maybe a really long, low dash?
The characters attribute controls the length. It is atomic, indivisible, and

18

content-less, like all the other characters. fillin is also unusual due to its
allowed use within mathematics.
〈20 Fill-in blank character〉 ≡

FillInText =
element fillin {

attribute characters {xsd:integer}?,
attribute rows {xsd:integer}?,
attribute cols {xsd:integer}?,
empty

}
Generator |=

FillInText

A large class of similarly indivisible items are units on physical quantities.
The <quantity> element is allowed to be empty, and the code should silently
produce no output. Expressing non-emptiness here might get a bit messy, so
a Schematron warning could be a good alternative.
〈21 SI units〉 ≡

UnitSpecification =
attribute prefix {text}?,
attribute base {text},
attribute exp {xsd:integer}?

Generator |=
element quantity {

element mag {text}?,
element unit {UnitSpecification}*,
element per {UnitSpecification}*

}

Some markup is for just ASCII characters, in other words, unadorned verbatim
text.
〈22 Verbatim text〉 ≡

Verbatim =
element c {text} |
Email |
element pf {

attribute language {text}?,
text

}

Simple markup is groupings of text that gets a different typographic appear-
ance, either through font changes or through delimiters. Examples are empha-
sis or paired quotations, non-examples are cross-references or footnotes.

Abbreviations are sequences of characters that shorten some longer word
or words (e.g. vs. for the Latin versus), initialisms are formed from the first
letters of a sequence of words (e.g. html), acronyms are pronounceable as
words (e.g. scuba).
〈23 Abbreviations〉 ≡

19

Group |=
element abbr {TextSimple} |
element acro {TextSimple} |
element init {TextSimple}

Notice that long text can be part of a grouping construction, and that long
text can can contain a group construction. The effect is that these groupings
can be nested arbitrarily deep.

〈24 Delimited groups〉 ≡

Group |=
element q {TextLong} |
element sq {TextLong} |
element angles {TextLong} |
element dblbrackets {TextLong}

〈25 Highlighted groups〉 ≡

Group |=
element em {TextLong} |
element term {TextLong} |
element alert {TextLong} |
element pubtitle {TextLong} |
element articletitle {TextLong} |
element foreign {
XMLLang?,
TextLong

}

〈26 Editing groups〉 ≡

Group |=
element delete {TextLong} |
element insert {TextLong} |
element stale {TextLong}

We use elements to get consistent typography when discussing PreTeXt itself.
We could probably limit the content of these elements to lowercase letters and
a hyphen. The definitions here will preclude any contained markup.

〈27 XML syntax groups〉 ≡

Group |=
element tag {text} |
element tage {text} |
element attr {text}

An empty taxon will match either version.

〈28 Taxonomic groups〉 ≡

20

Group |=
element taxon {

attribute ncbi {xsd:integer}?,
(

text |
(

element genus {text}?,
element species {text}?

)
)

}

〈29 Text groups〉 ≡
〈Abbreviations 23 [18]〉
〈Delimited groups 24 [19]〉
〈Highlighted groups 25 [19]〉
〈Editing groups 26 [19]〉
〈XML syntax groups 27 [19]〉
〈Taxonomic groups 28 [19]〉

10 Mathematics
All mathematics appears inside paragraphs, and the syntax is that of LATEX,
as supported by MathJax, whose supported commands and macros are meant
to be very similar to those of the AMSMath package. Note that the content is
typically unstructured, excepting “fill-in-the-blank”, WeBWorK variables (see
variants), and internal cross-references in multi-row display mathematics. Also,
md and mdn are not targets of cross-references, though their rows can be. Fill-in
blanks have a variant attribute @fill more suited for mathematics.

〈30 Mathematics〉 ≡

FillInMath = element fillin {
(attribute fill{text}?|attribute characters {xsd:integer}?),
empty

}
MathInline =

element m {
mixed {(FillInMath | WWVariable)*}

}
MathRow =

element mrow {
MetaDataTarget,
(

attribute number {"yes" | "no"} |
attribute tag {"star" | "dstar" | "tstar" |

"dagger" | "ddagger" | "tdagger" |
"daggerdbl" | "ddaggerdbl" | "tdaggerdbl" |
"hash" | "dhash" | "thash" |
"maltese" | "dmaltese" | "tmaltese" }

)?,
attribute break {"yes" | "no"}?,

21

mixed {(Xref | FillInMath | WWVariable)*}
}

MathIntertext = element intertext {TextLong}
MathDisplay =

element me {
mixed {(FillInMath | WWVariable)*}

} |
element men {

MetaDataTarget,
mixed {(FillInMath | WWVariable)*}

} |
element md {

attribute number {"yes" | "no"}?,
attribute break {"yes" | "no"}?,
attribute alignment {text}?,
attribute alignat-columns {text}?,
MathRow,
(MathRow | MathIntertext)*

} |
element mdn {

attribute number {"yes" | "no"}?,
attribute break {"yes" | "no"}?,
attribute alignment {text}?,
attribute alignat-columns {text}?,
MathRow,
(MathRow | MathIntertext)*

}

11 Mathematics (experimental)
We include some additions to math elements, including allowing xrefs inside
displayed math.

〈31 Mathematics (experimental)〉 ≡

MathDisplay |=
element me {

MetaDataTarget?,
mixed {(Xref | FillInMath | WWVariable)*}

} |
element men {

MetaDataTarget?,
mixed {(Xref | FillInMath | WWVariable)*}

} |
element md {

attribute number {"yes" | "no"}?,
attribute break {"yes" | "no"}?,
attribute alignment {text}?,
attribute alignat-columns {text}?,
MathRow,
(MathRow | MathIntertext)*

} |
element mdn {

22

attribute number {"yes" | "no"}?,
attribute break {"yes" | "no"}?,
attribute alignment {text}?,
attribute alignat-columns {text}?,
MathRow,
(MathRow | MathIntertext)*

}

12 Blocks
A text block is very similar to a paragraph. It can be an actual paragraph,
a sequence of paragraphs enclosed as a block quote (with attribution, per-
haps), or a large chunk of unformatted text presented typically in a monospace
font. Certain “atomic” objects, such as an <image> may be placed as peers of
paragraph-like objects.

A statement block is used in statements. What are those? Theorems
have statements, exercises have statements, questions have statements. Some
of these blocks with statements also have peers of statements that are proofs,
hints, answers, and solutions. In statements, and their peers, we include text
blocks, captioned items, asides, side-by-side layouts, and Sage computations,
but exclude many of the numbered and titled division blocks. A slight extension
is a solution block, which is everything that can go in a <statement>, plus
one or more <proof>, only as part of a <hint>, <answer>, or <solution>.

A division block includes text blocks, statement blocks, plus topical
chunks of text that can have numbered headings or numbered captions, with
optional titles, and are set apart slightly from the surrounding narrative. These
are placed mostly as children of divisions, and so one cannot contain another.
They certainly contain paragraphs, and all that goes into them, such as math-
ematics (inline and display) and figures (and other captioned items). The
sidebyside element can be used to illustrate a division block with a variety of
images and displayed text in flexible layouts.

A <fragment> is used for literate programming, and is numbered, so it is
allowed places where other numbered items go.

Other division blocks include poem, aside, and assemblage. These are
never numbered, but can have titles. The list-of mechanism is a convenience
device to automatically create lists of contents, and so we leave surrounding
divisional structure to the author. A sidebyside, and its cousin, sbsgroup,
are strictly layout devices. The sage element is unique for its possibilities in
certain electronic formats.

〈32 Blocks〉 ≡

BlockText =
Paragraph | BlockQuote | Preformatted |
Image | Video | Program | Console | Tabular

BlockStatementNoCaption =
BlockText | Aside |
SideBySideNoCaption | SideBySideGroupNoCaption

BlockStatement =
BlockText |
Figure | Aside |
SideBySide | SideBySideGroup | Sage

BlockSolution =

23

BlockStatement | Proof
BlockDivision =

BlockStatement |
Remark | Computation | Theorem | Proof | Definition |
Axiom | Example | Exercise | Project |
Poem | Assemblage | ListGenerator | Fragment

Blocks are often structured, in a light way. Hints, answers, and solutions
adorn exercises, examples, and projects. A simple introduction or conclusion
is sometimes useful. A prelude or postlude are authored inside a block and
so are associated with it. But they are presented before and after the block
visually. An interlude will be used between the statement of a theorem and
its proof.

When a block is structured to allow some of the ancillary parts, a statement
element is used to structure the main part. Hints, answers, and solutions can
be the target of cross-references, but do not get author-supplied titles.
〈33 Common components of blocks〉 ≡

Prelude =
element prelude {BlockText+}

Interlude =
element interlude {BlockText+}

Postlude =
element postlude {BlockText+}

Statement =
element statement {

BlockStatement+
}

Hint =
element hint {

MetaDataTitleOptional,
BlockSolution+

}
Answer =

element answer {
MetaDataTitleOptional,
BlockSolution+

}
Solution =

element solution {
MetaDataTitleOptional,
BlockSolution+

}

13 Introductions, Conclusions, and Headnotes
The introduction and conclusion containers can be used in a variety of other
structured elements. They come in three levels, according to what they can
contain, and are meant to be consonant with their surroundings. As children
of a division, they may carry a title, which in turn allows them to be cross-
referenced by that text.

A <headnote> is like an <introduction>, but does not have a symmetric
concluding element, and is typically meant for specialized divisions, such as a

24

<glossary>.

〈34 Introductions, conclusions, headnotes〉 ≡

IntroductionText =
element introduction {BlockText+}

ConclusionText =
element conclusion {BlockText+}

IntroductionStatementNoCaption =
element introduction {BlockStatementNoCaption+}

ConclusionStatementNoCaption =
element conclusion {BlockStatementNoCaption+}

IntroductionStatement =
element introduction {BlockStatement+}

ConclusionStatement =
element conclusion {BlockStatement+}

IntroductionDivision =
element introduction {

MetaDataTitleOptional,
BlockDivision+

}
ConclusionDivision =

element conclusion {
MetaDataTitleOptional?,
BlockDivision+

}
HeadNote =

element headnote {BlockStatementNoCaption+}

14 References
There are a variety of referencing mechanisms, external references, internal
cross-references, index entries, and specialized support for a table of mathe-
matical notation.

〈35 Cross-references〉 ≡

XrefTextStyle =
"local" | "global" | "hybrid" | "type-local" | "type-global" |
"type-hybrid" | "phrase-global" | "phrase-hybrid" |
"title" | "custom"

Reference = Url | Xref
Url =

element url {
attribute href {text},
attribute visual {text}?,
TextShort?

}
Xref =

element xref {
(

attribute ref {text} |
(attribute first {text}, attribute last {text}) |

25

attribute provisional {text}
),
attribute text { XrefTextStyle }?,
attribute detail {text}?,
TextShort

}
NotationDescription =

element description {
TextShort

}
Notation =

element notation {
element usage {MathInline},
NotationDescription

}

Footnotes are especially dangerous. They should contain quite a bit of content,
and should be targets of cross-references. So the content is not as expansive
as a regular paragraph, which is possibly too restrictive.
〈36 Footnotes〉 ≡

Footnote =
element fn {

MetaDataTarget,
TextLong

}

Index entries have two forms, simple and structured. The start and finish
attributes are meant to use xml:id to create an index range that crosses xml
boundaries. (Replace principal tags with idx/h/h.)

The actual index is generated within the <index> division via the index-list
element.

Note that we might point to another index entry as part of a “see also”
mechanism.
〈37 Index entries〉 ≡

IdxHeading =
element h {

attribute sortby {text}?,
TextShort

}
Index =

element idx {
MetaDataTarget,
attribute sortby {text}?,
attribute start {text}?,
attribute finish {text}?,
(

TextShort
|

(
IdxHeading,
IdxHeading?,

26

IdxHeading?,
(element see {TextShort} | element seealso {TextShort})?
)

)
}

IndexList = element index-list {empty}

15 Objectives
A division may lead (first) with an optional list of objectives for the division
and may be followed by a (final) optional list of outcomes. The element names
are only chosen to reflect a pre- and post- behavior and so could be used for
objectives, outcomes, and standards in a variety of ways.

〈38 Objectives and outcomes〉 ≡

Objectives =
element objectives {

MetaDataTitleOptional,
IntroductionText?,
List,
ConclusionText?

}
Outcomes =

element outcomes {
MetaDataTitleOptional,
IntroductionText?,
List,
ConclusionText?

}

16 Block Quotes
These are a run of paragraphs, but may optionally have an attribution.

〈39 Block quotes〉 ≡

BlockQuote =
element blockquote {

MetaDataTitleOptional,
Paragraph+,
Attribution?

}
SimpleLine =

element line {TextSimple}
ShortLine =

element line {TextShort}
LongLine =

element line {TextLong}

27

17 Verbatim Text
Large blocks of verbatim material, rather than just little bits in a sentence. A
code display, cd, is an analog of a math display, and meant to be used within
a paragraph, either as a single line of text, or optionally structured as several
lines by using code lines, cline. pre is a block, which preserves line breaks and
sanitizes whitespace to the left. It can be optionally structured as code lines. It
should be thought of as a monospace analogue of a “regular” paragraph, minus
indentation and automatic line-breaking. A <program> maybe structured with
a <code> element, or simply text.

〈40 Verbatim displays〉 ≡

CodeLine =
element cline {text}

CodeDisplay =
element cd {

attribute latexsep {text}?,
(text | CodeLine+)

}
Preformatted =

element pre {
text | CodeLine+

}
ConsoleOutput =

element output {text}
ConsoleInput =

element input {
attribute prompt {text}?,
attribute continuation {text}?,
text

}
Console =

element console {
Component?,
attribute prompt {text}?,
attribute continuation {text}?,
attribute width {text}?,
attribute margins {text}?,
(

ConsoleInput,
ConsoleOutput?

)+
}

ProgramPreamble =
element preamble {

attribute visible {"yes"|"no"}?,
text

}
ProgramCode = element code {text}
ProgramPostamble =

element postamble {
attribute visible {"yes"|"no"}?,
text

28

}
ProgramTests =

element tests {
attribute visible {"yes"|"no"}?,
(

text
|

element iotest {
element input {text},
element output {text}

}+
)

}
ProgramStdin =

element stdin {
text

}
Program =

element program {
Component?,
LabelID?,
UniqueID?,
attribute width {text}?,
attribute margins {text}?,
attribute autorun {"yes"|"no"}?,
attribute chatcodes {"yes"|"no"}?,
attribute codelens {"yes"|"no"}?,
attribute compiler-args {text}?,
attribute extra-compiler-args {text}?,
attribute database {text}?,
attribute add-files {text}?,
attribute compile-also {text}?,
attribute download {"yes"|"no"}?,
attribute hidecode {"yes"|"no"}?,
attribute highlight-lines {text}?,
attribute include {text}?,
attribute filename {text}?,
attribute interactive {"codelens"|"activecode"}?,
attribute interpreter-args {text}?,
attribute language {text}?,
attribute line-numbers {"yes"|"no"}?,
attribute linker-args {text}?,
attribute timelimit {text}?,
(

text
|

(
ProgramPreamble?,
ProgramCode,
ProgramPostamble?,
ProgramTests?,
ProgramStdin?

)
)

29

}

18 Lists
Are complicated. Maybe we need a special type of paragraph which does not
allow nesting a description list down into some other list?

As a container, the lists themselves get no metadata. But the numbered or
titled list items do get metadata. To point to an entire list, make it a named
list and point to that.

〈41 Lists〉 ≡

ListItem = element li {
(

(MetaDataTarget, TextParagraph)
|

(MetaDataTitleOptional, BlockStatement+)
)

}
DefinitionListItem = element li {

MetaDataTitle,
BlockStatement+

}
List =

element ol {
Component?,
attribute cols {"2"|"3"|"4"|"5"|"6"}?,
attribute marker {text}?,
ListItem+

} |
element ul {

Component?,
attribute cols {"2"|"3"|"4"|"5"|"6"}?,
attribute marker {"disc" | "circle" | "square" | ""}?,
ListItem+

} |
element dl {

Component?,
attribute width {"narrow" | "medium" | "wide"}?,
DefinitionListItem+

}

19 Definitions
Definitions are special, there is nothing else quite like them. A statement, no
proof, and also a natural place for notation entries.

〈42 Definitions〉 ≡

DefinitionLike =
MetaDataTitleOptional,
Notation*,

30

Statement
Definition =

element definition {DefinitionLike}

20 Theorems, And Other Results
Theorems, corollaries, lemmas — they all have statements, and should have
proof(s). Otherwise they are all the same. A proof may be divided with cases,
in no particular rigid way, just as a marker of any number of different, non-
overlapping portions of a proof. Titles can be used to describe each case, or
implication arrows may be used (typically with a proof of an equivalence). A
proof is also allowed to stand on its own as a block, independent of a structure
like a theorem or algorithm.

〈43 Theorems, and similar〉 ≡

Case =
element case {

MetaDataTitleOptional,
attribute direction {text}?,
BlockStatement+
}

Proof =
element proof {

MetaDataTitleOptional,
(BlockStatement | Case)+

}
TheoremLike =

MetaDataTitleCreatorOptional,
(BlockStatement+ | (Statement, Proof*))

Theorem =
element theorem {TheoremLike} |
element lemma {TheoremLike} |
element corollary {TheoremLike} |
element claim {TheoremLike} |
element proposition {TheoremLike} |
element algorithm {TheoremLike} |
element fact {TheoremLike} |
element identity {TheoremLike}

21 Proof-like (experimental)
We extend the types of elements that are types of proofs, as well as create a
ProofLike named pattern for what can go in them.

〈44 Proofs, and similar〉 ≡

ProofLike =
MetaDataTitleOptional,
(BlockStatement | Case)+

Proof |=
element proof {ProofLike} |

31

element argument {ProofLike} |
element justification {ProofLike} |
element reasoning {ProofLike} |
element explanation {ProofLike}

22 Axioms and Other Mathematical Statements
Mathematical statements that do not have proofs (in other words, no proof is
known, or a proof is not appropriate).

〈45 Axioms, and similar〉 ≡

AxiomLike =
MetaDataTitleCreatorOptional,
Statement

Axiom =
element axiom {AxiomLike} |
element principle {AxiomLike} |
element conjecture {AxiomLike} |
element heuristic {AxiomLike} |
element hypothesis {AxiomLike} |
element assumption {AxiomLike}

23 Projects and Activities
A favorite of Inquiry-Based Learning textbooks. Numbered independently.
Possibly structured with task. Three different ways to structure this, we
combine the second two so that the derived XML Schema (XSD) version is
less-confusing to certain tools (e.g. the Red Hat XML schema validator used
within VS Code).

〈46 Projects, and similar〉 ≡

ProjectLike =
MetaDataTitleOptional,
(

(BlockStatement+) |
(

Prelude?,
(

(Statement, Hint*, Answer*, Solution*) |
(IntroductionStatement?, Task+, ConclusionStatement?) |
(IntroductionText?, WebWork, ConclusionText?)

),
Postlude?

)
)

Project =
element activity {ProjectLike} |
element investigation {ProjectLike} |
element exploration {ProjectLike} |
element project {ProjectLike}

32

Task =
element task {

MetaDataTitleOptional,
(

BlockStatement+ |
(Statement, Hint*, Answer*, Solution*) |
(IntroductionStatement?, Task+, ConclusionStatement?)

)
}

24 Remarks and Other Comments
Really simple blocks, they do not have much structure, and so are just runs
of paragraphs, though <figure>, <table>, <listing>, and <list> may be in-
cluded.

〈47 Remarks, and similar〉 ≡

RemarkLike =
MetaDataTitleOptional,
BlockStatement+

Remark =
element remark {RemarkLike} |
element convention {RemarkLike} |
element note {RemarkLike} |
element observation {RemarkLike} |
element warning {RemarkLike} |
element insight {RemarkLike}

25 Computations and Technology
Somewhat simple blocks, they do not have much structure, but can hold more
than a Remark.

〈48 Computation, and similar〉 ≡

ComputationLike =
MetaDataTitleOptional,
BlockStatement+

Computation =
element computation {ComputationLike} |
element technology {ComputationLike} |
element data {ComputationLike}

26 Asides
An aside is a deviation from the narrative, and might physically move in the
presentation (say, to a margin, or to a knowl). biographical and historical
may be further developed.

〈49 Asides, and similar〉 ≡

33

AsideLike =
MetaDataTitleOptional,
BlockText+

Aside =
element aside {AsideLike} |
element biographical {AsideLike} |
element historical {AsideLike}

27 Assemblages
Since an assemblage is meant to accumulate significant content (as a review
or summary, or for initial presentation) lists are allowed here, an exception to
their restriction to paragraphs. We are also mildly restrictive about what can
be content here—in particular blocks are excluded, despite not strictly being
blocks themselves.

〈50 Assemblages〉 ≡

Assemblage =
element assemblage {

MetaDataTitleOptional,
(BlockText | SideBySideNoCaption | SideBySideGroupNoCaption)+

}

28 Figures, Tables, Listings and Named Lists
These are containers that all carry titles (mandatory and optional), captions
for two, and numbers. They need to be filled with other (atomic) items, which
we generally call planar due to their two-dimensional and rigid characteristics.
These have also called captioned items in the code, even if not all allow a
caption. The option for a lanscape orientation is only relevant for print, and
not within a sidebyside.

〈51 Captioned and titled displays〉 ≡

Caption =
element caption {TextLong}

Landscape =
attribute landscape {"yes" | "no"}

Figure =
element figure {

MetaDataCaption,
Landscape?,
(

Image |
Video |
SideBySide |
SideBySideGroup |
MuseScore

)
} |
element table {

34

MetaDataAltTitle,
Landscape?,
Tabular

} |
element listing {

MetaDataAltTitle,
Landscape?,
(

Program |
Console

)
} |
element list {

MetaDataAltTitle,
Landscape?,
IntroductionText?,
List,
ConclusionText?

}

The guts of a table go in a tabular element.
〈52 Tabular display〉 ≡

BorderThickness = "none" | "minor" | "medium" | "major"
BorderTop =

attribute top {BorderThickness}
BorderBottom =

attribute bottom {BorderThickness}
BorderLeft =

attribute left {BorderThickness}
BorderRight =

attribute right {BorderThickness}
AlignmentHorizontal =

attribute halign {"left" | "center" | "right" | "justify"}
AlignmentVertical =

attribute valign {"top" | "middle" | "bottom"}

TableCell =
element cell {

AlignmentHorizontal?,
BorderBottom?,
BorderRight?,
attribute colspan {text}?,
(

TextLong |
LongLine+ |
Paragraph+

)
}

TableRow =
element row {

attribute header {"yes" | "no" | "vertical"}?,
AlignmentHorizontal?,
AlignmentVertical?,

35

BorderBottom?,
BorderLeft?,
TableCell+

}
TableColumn =

element col {
AlignmentHorizontal?,
BorderTop?,
BorderRight?,
attribute width {text}?

}
Tabular =

element tabular {
Component?,
attribute width {text}?,
attribute margins {text}?,
attribute row-headers {"yes" | "no"}?,
AlignmentHorizontal?,
AlignmentVertical?,
BorderTop?,
BorderBottom?,
BorderLeft?,
BorderRight?,
TableColumn*,
TableRow+

}

29 Figure (experimental)
We add tabular as a valid child of a figure.
〈53 Figure (experimental)〉 ≡

Figure |=
element figure {

MetaDataCaption,
Tabular

}

30 Side-By-Side Layout
Page width or screen width, both are at a premium. Height goes on forever
(barring physical page breaks) and we have many devices for demarcating that
flow. But sometimes you need to organize items horizontally, i.e. side-by-side.
We place the components of a sidebyside into generic regions of specified
width called panels.

This is a pure layout device. So you cannot title it, nor caption it. It does
not admit a xml:id attribute, since you cannot make it the target of a cross-
reference. Nor can you reference it from the index (but you can point to its
surroundings from the index).

Because of its utility, it can go anywhere a block can go (i.e., as a child of
a division) and it can go many other places as a sibling of a paragraph (such
as to illustrate an example).

36

Note that widths give on a sidebyside override any width given to the
components of the panels.

A <stack> allows non-captioned, non-titled elements to accumulate verti-
cally in a single panel. It is a basic container.

A group of side-by-sides is designed to stack vertically with common con-
trols on widths, etc. Its implementation is entirely experimental right now,
even if we are relatively confident of the markup.

〈54 Side-by-side layouts〉 ≡

Stack =
element stack {

(
Tabular |
Image |
Video |
Program |
Console |
Paragraph |
Preformatted |
List

)+
}

SidebySideAttributes =
Component?,
attribute margins {text}?,
(attribute width {text} | attribute widths {text})?,
(AlignmentVertical | attribute valigns {text})?

SideBySide =
element sidebyside {

SidebySideAttributes,
(

Figure |
Poem |
Tabular |
Image |
Video |
Program |
Console |
Paragraph |
Preformatted |
List |
Stack

)+
}

SideBySideNoCaption =
element sidebyside {

SidebySideAttributes,
(

Poem |
Tabular |
Image |
Video |
Program |

37

Console |
Paragraph |
Preformatted |
List |
Stack

)+
}

SideBySideGroup =
element sbsgroup {

SidebySideAttributes,
SideBySide+

}
SideBySideGroupNoCaption =

element sbsgroup {
SidebySideAttributes,
SideBySideNoCaption+

}

31 Images and Graphics
Raster, and described by languages, plus 100% duplicates. The WeBWorK
variant is quite different.

Note: the ImageCode pattern allows an @xml:id attribute since it is used to
construct a filename.

〈55 Images〉 ≡

Image = ImageRaster | ImageCode
ImageDescription = element description {(Paragraph | Tabular)+}
ImageShortDescription = element shortdescription {text}
ImageShortDescriptionCode = element shortdescription {

(text | WWVariable)+
}
ImageRaster =

element image {
UniqueID?,
Component?,
attribute width {text}?,
attribute margins {text}?,
attribute rotate {text}?,
attribute archive {text}?,
attribute source {text},
(
attribute decorative {"yes"} |
(
attribute decorative {"no"}?,
(
ImageShortDescription? &
ImageDescription?

)
)

)
}

38

CodeLatexImage =
element latex-image {

LabelID?,
Component?,
text

}
ImageCode =

element image {
UniqueID?,
Component?,
attribute width {text}?,
attribute margins {text}?,
attribute archive {text}?,
(
attribute decorative {"yes"} |
(
attribute decorative {"no"}?,
(
ImageShortDescriptionCode ? &
ImageDescription? &
(
CodeLatexImage |
element asymptote {
LabelID?,
Component?,
text

} |
element sageplot {

LabelID?,
Component?,
attribute variant {'2d'|'3d'}?,
attribute aspect {text}?,
text

}
)

)
)

)
}

WWLatexImage = element latex-image {
text

}
ImageWW =

element image {
attribute pg-name {text}?,
attribute width {text}?,
(
attribute decorative {"yes"} |
(
attribute decorative {"no"}?,
(
ImageShortDescriptionCode? &
ImageDescription? &
WWLatexImage?

39

)
)

)
}

32 Sage Code
Sage is integral.
〈56 Sage code〉 ≡

SageOutput = element output {text}
SageInput = element input {text}
Sage = element sage {

Component?,
attribute doctest {text}?,
attribute tolerance {text}?,
attribute auto-evaluate {'no'|'yes'}?,
attribute language {text}?,
attribute type {text}?,
(SageInput, SageOutput?)?

}

33 Legacy Interactive Elements
Some specific interactive goodies. These are being phased-out in favor of a
more general <interactive> element.
〈57 Interactives〉 ≡

MuseScore =
element score {

attribute musescoreuser {text},
attribute musescore {text}

}

34 Interactive Elements (experimental)
A general <interactive> element.
〈58 Interactives〉 ≡

Interactive =
element interactive {

UniqueID?,
LabelID?,
Component?,
attribute aspect { text }?,
attribute width { text }?,
attribute platform { text }?,
attribute preview { text }?,
attribute iframe { text }?,

40

attribute source { text }?,
attribute version { text }?,
(
(
Slate |
SideBySideNoCaption |
SideBySideGroupNoCaption

)* &
element instructions { mixed { MetaDataTitleOptional, BlockText } }? &
element static { Image }?

)

}

Stack |=
element stack {

(
Tabular |
Image |
Video |
Program |
Console |
Paragraph |
Preformatted |
List |
Slate

)+
}

Slate =
element slate {

UniqueID?,
LabelID?,
Component?,
(
JessieCodeAtt |
(
attribute surface { text },
(
attribute source { text } |
attribute material { text }

)?,
attribute aspect { text }?,
(
Paragraph |
Tabular |
SideBySideNoCaption |
SlateInput |
element xhtml:button {
attribute type { text },
attribute id { text },
text*

}? |
text*

41

)*
)

)
}

JessieCodeAtt =
attribute surface {"jessiecode"},
attribute axis {"true" | "false"}?,
attribute grid {"true" | "false"}?,
(

attribute source {text} |
text*

)

SlateInput =
element input {

attribute type {text}?,
attribute value {text}?,
attribute onkeypress {text}?,
attribute onclick {text}?,
attribute style {text}?

}

add Interactives where used
BlockStatement |= Interactive

Figure |= element figure { MetaDataCaption, Interactive }

SideBySide |= element sidebyside {
SidebySideAttributes,
(Interactive | Slate)+

}

SideBySideNoCaption |= element sidebyside {
SidebySideAttributes,
(Interactive | Slate)+

}

Exercises |= element exercises {
MetaDataAltTitleOptional,
IntroductionDivision?,
(
(Exercise | ExerciseGroup)+ |
Subexercises+ | Interactive
),
ConclusionDivision?

}

35 Audio and Video
Well, just video right now. The xml:id is not used as a target, but rather as a
name for a static preview image that is auto-generated by the pretext script
thumbnail file, hence optional. preview maybe be one of two reserved switches,

42

or the filename of a static preview image.
Note: the Video pattern allows an @xml:id attribute since it is used to

construct a filename for preview images (“poster”), especially when scraped.

〈59 Video and audio〉 ≡

Video =
element video {

UniqueID?,
LabelID?,
Component?,
attribute width {text}?,
attribute margins {text}?,
attribute aspect {text}?,
attribute start {xsd:integer}?,
attribute end {xsd:integer}?,
attribute play-at {"embed" | "popout" | "select"}?,
attribute preview {"default" | "generic" | text}?,
(AttributesSourceFile | AttributesNetwork | AttributesYouTube |
AttributesYouTubePlaylist | AttributesVimeo)

}
AttributesSourceFile =

attribute source {text}
AttributesNetwork =

attribute href {text}
AttributesYouTube =

attribute youtube {text}
AttributesYouTubePlaylist =

attribute youtubeplaylist {text}
AttributesVimeo =

attribute vimeo {text}

36 Poetry
Poems!

〈60 Poems〉 ≡

AlignmentPoem = attribute halign {"left" | "center" | "right"}
PoemAuthor =

element author {
AlignmentPoem?,
TextShort

}
Poem =

element poem {
MetaDataTitleOptional,
AlignmentPoem?,
PoemAuthor?,
(PoemLine+ | Stanza+)

}
Stanza =

element stanza {

43

MetaDataTitleOptional,
PoemLine+

}
PoemLine =

element line {
attribute indent {xsd:integer}?,
TextShort

}

37 Exercises
Inline, divisional, and WeBWorK. Exercises use task to structure parts, where
before they used ordered lists for parts of a statement (to eventually be depre-
cated).

〈61 Exercises〉 ≡

ExerciseOrderedList =
element ol {

attribute cols {text}?,
attribute marker {text}?,
ExerciseListItem+

}
ExerciseListItem = element li {

MetaDataTarget,
(TextParagraph | BlockText+)

}
ExerciseBody =

(
BlockStatement |
ExerciseOrderedList

)+
StatementExercise =

element statement { ExerciseBody }
Exercise =

element exercise {
MetaDataTitleOptional,
attribute number {text}?,
(
ExerciseBody |
(StatementExercise, Hint*, Answer*, Solution*) |
(IntroductionStatement?, Task+, ConclusionStatement?) |
(IntroductionText?, WebWork, ConclusionText?)
)

}
ExerciseGroup =

element exercisegroup {
MetaDataTitleOptional,
attribute cols {"2"|"3"|"4"|"5"|"6"}?,
IntroductionStatementNoCaption,
Exercise+,
ConclusionStatementNoCaption?

}

44

38 Exercises (experimental)
We can have exercises that are interactive, such as true/false, multiple choices,
Parson’s problems, etc.

〈62 Exercises (experimental)〉 ≡

MyOpenMath =
MetaDataTitleOptional,
IntroductionText?,
element myopenmath {

attribute problem {text},
attribute params {text}?

},
ConclusionText?

TrueFalse =
MetaDataTitleOptional,
attribute number {text}?,
element statement {

attribute correct {"yes"|"no"},
Paragraph

},
Feedback?, Hint*, Answer*, Solution*

MultipleChoice =
MetaDataTitleOptional,
attribute number {text}?,
StatementExercise,
element choices {

attribute randomize {"yes"|"no"}?,
Choice+

},
Hint*, Answer*, Solution*

Choice =
element choice {

attribute correct {"yes"|"no"}?,
((mixed {BlockText?})
| (StatementExercise, Feedback?))

}
Parsons =

MetaDataTitleOptional,
attribute number {text}?,
attribute language {text}?,
attribute adaptive {"yes"|"no"}?,
attribute indentation {text}?,
StatementExercise,
element blocks {

attribute layout {"horizontal"}?,
attribute randomize {"yes"|"no"}?,
Block+

},
Hint*, Answer*, Solution*,
(

element preamble {
attribute indent {text}?,

45

text
}?,
Program,
element postamble {

attribute indent {text}?,
text

}?
)?

Block =
element block {

attribute order {xsd:integer}?,
((

attribute correct {"yes"|"no"}?,
mixed {BlockText?, CodeLine?}+

) |
(

element choice {
attribute correct {"yes"|"no"}?,
mixed {BlockText?, CodeLine?}+

}+
))

}
Matching =

MetaDataTitleOptional,
attribute number {text}?,
StatementExercise,
Feedback?,
element matches {

Match+
},
Hint*, Answer*, Solution*

Match =
element match {

attribute order {xsd:integer}?,
element premise {

mixed {BlockText?}
},
element response {

mixed {BlockText?}
}

}
FreeResponse =

MetaDataTitleOptional,
attribute number {text}?,
attribute attachment {"yes" | "no"}?,
(
(ExerciseBody, Response?) |
(StatementExercise, Response?, Hint*, Answer*, Solution*) |
(IntroductionStatement?, Task+, ConclusionStatement?)
)

Response =
element response {empty}

46

Selectable areas
Area =

element area {
attribute correct {"yes"|"no"}?,
TextLong

}
TextLongAreas = mixed { (

Area |
Character |
Generator |
Verbatim |
GroupAreas |
MathInline |
Music |
Reference |
WWVariable)* }

GroupAreas |=
element q {TextLongAreas} |
element sq {TextLongAreas}

TextParagraphAreas = mixed { (
Character |
Generator |
Verbatim |
Group |
WWVariable |
MathInline |
Music |
Reference |
CodeDisplay |
MathDisplay |
List |
Footnote |
Notation |
Index |
Area |
GroupAreas)* }

ParagraphAreas =
element p {

UniqueID?,
LabelID?,
Component?,
TextParagraphAreas

}
Areas =

MetaDataTitleOptional,
attribute number {text}?,
StatementExercise,
Feedback?,
element areas {
ParagraphAreas+

},
Hint*, Answer*, Solution*

General feedback element

47

Feedback =
element feedback {

MetaDataTitleOptional,
BlockSolution+

}
Include all exercise types in exercise and activity
Exercise |=

element exercise {
MyOpenMath |
TrueFalse |
MultipleChoice |
Parsons |
Matching |
FreeResponse |
Areas

}
ProjectLike |=

MyOpenMath |
TrueFalse |
MultipleChoice |
Parsons |
Matching |
FreeResponse |
Areas

39 Bibliography
This is all stop-gap and will change radically. But it seems to work for now.
So these rules should not be taken as definitive, at all.

〈63 Bibliography〉 ≡

TextBib = mixed { (Character | MathInline)* }
BibliographyItem =

element biblio {
MetaDataTarget,
((

attribute type {"raw"},
(TextLong |
Ibid |
BibTitle |
BibYear |
BibJournal |
BibNumber |
BibVolume |
BibNote)*

) |
(

attribute type {"bibtex"},
(BibTitle |
BibAuthor |
BibEditor |
BibYear |

48

BibJournal |
BibNumber |
BibVolume |
BibSeries |
BibPublisher |
BibPages |
BibNote)*

))
}

Ibid = element ibid {empty}
BibYear = element year {text}
BibJournal = element journal { TextBib }
BibNumber = element number {text}
BibVolume = element volume {text}
BibTitle = element title {TextLong}
BibNote = element note {UniqueID?, Paragraph+}
BibAuthor = element author {text}
BibEditor = element editor {text}
BibSeries = element series {text}
BibPublisher = element publisher {text}
BibPages = element pages {

(
attribute start {text},
attribute end {text},
empty

) |
(

text
)
}

40 Glossary
A <glossary> is primarly built up as a sequence of “glossary items,”, using the
<gi> element, by analogy with list items.

〈64 Glossary〉 ≡

GlossaryItem =
element gi {

MetaDataTitle,
BlockStatementNoCaption+

}

41 Examples and Questions
Expository, but with solutions, etc. (Borrows from exercises and projects.)

〈65 Examples, and similar〉 ≡

ExampleLike =
MetaDataTitleOptional,

49

(
(BlockStatement)+ |
(Statement, Hint*, Answer*, Solution*) |
(IntroductionStatement?, Task+, ConclusionStatement?)

)
Example =

element example {ExampleLike} |
element question {ExampleLike} |
element problem {ExampleLike}

42 WeBWorK Exercises
Modified versions of various aspects to allow authoring WeBWorK exercises.

Notes:

• Statements, hints and solutions do not require at least one paragraph, so
may be just a table or figure (say).

• Are static and set elements mutually exclusive?

• Can the usage part of the var element be split across math and para-
graphs?

〈66 WeBWorK〉 ≡

WebWork = (WebWorkAuthored | WebWorkSource)
WebWorkSource =

element webwork {
attribute source {text}?,
attribute seed {xsd:integer}?

}
WWDescription =

element description {
(

TextSimple |
SimpleLine+

)
}

WebWorkAuthored =
element webwork {

UniqueID?,
LabelID?,
Component?,
attribute seed {xsd:integer}?,
attribute copy {text}?,
WWDescription?,
WWMacros?,
element pg-code {text}?,
(

(StatementExerciseWW, HintWW?, SolutionWW?)
|

(IntroductionText?, TaskWW+, ConclusionText?)
)

}

50

BlockStatementWW =
Paragraph |
Preformatted |
Tabular |
ImageWW

StatementExerciseWW =
element statement {

(BlockStatementWW|WWInstruction)+
}

TaskWW =
element task {

MetaDataTitleOptional,
(

(StatementExerciseWW, HintWW?, SolutionWW?) |
(IntroductionText?, TaskWW+, ConclusionText?)

)
}

WWMacros =
element pg-macros {

element macro-file {text}+
}

WWVariable =
The WeBWorK "var" element appears in the RELAX-NG schema as a child of many elements, but almost always as a descendant of a "p" element or a "cell" element. As an element that is only relevant for a WeBWorK problem, occurrences of "var" must be within a "webwork" element. A Schematron rule will check on these two situations.
element var {

(attribute name {text},
attribute evaluator {text}?,
attribute width {text}?,
attribute category {

"angle" | "decimal" | "exponent"
| "formula" | "fraction" | "inequality"
| "integer" | "interval" | "logarithm"
| "limit" | "number" | "point"
| "syntax" | "quantity" | "vector"
}?,

attribute form {"popup"|"buttons"|"checkboxes"|"none"}?) |
(attribute form {"essay"},
attribute width {text}?)

}
WWInstruction =

element instruction {TextShort}
HintWW =

element hint {
(BlockStatementWW)+

}
SolutionWW =

element solution {
(BlockStatementWW)+

}

43 Literate Programming
Literate programming is a technique for documenting programs, with code
fragments rearranged to create a syntactically correct program. A root frag-

51

ment is indicated by @filename which could have an @xml:id, otherwise the
@xml:id is required.

〈67 Literate programming〉 ≡

Fragment =
element fragment {

(
attribute xml:id {text}

|
(

attribute filename {text},
attribute xml:id {text}?

)
),
Title,
(

element code {text} |
element fragref {

attribute ref {text}
}

)+
}

44 Frequently Used
Frequently used items, with no natural place to associate them.

〈68 Frequent constructions〉 ≡
〈Attribution 69 [51]〉
〈Metadata 70 [52]〉
Used on the end of prefaces to “sign” them, and on block quotes.

〈69 Attribution〉 ≡

Attribution =
element attribution {

(TextLong | LongLine+)
}

There is a handful of elements which describe an item, but do not necessarily
get processed as content. Titles are an obvious example, and index entries
are another. Here we isolate a few common patterns to use for consistency
throughout.

Notes:

• Language tags go on the root element to affect variants of names of
objects, like theorems.

• The xinlude mechanism may pass language tags down through the root
element of included files to make them universally available.

• The xinclude mechanism inserts a @xml:base attribute on the root ele-
ment of an included file. So we allow this attribute on any element that
allows a title.

52

• The component attribute allows versions to be controlled by a publisher
file.

• These are not unordered specifications since they contain several attrib-
utes, and we enforce a title, subtitle, <shorttitle>, <plaintitle>,
creator, caption, idx order.

• MetaDataTarget is for items that are targets of cross-references, but with-
out even optional titles. Since they will be knowled, they can appear in
an index. But without the potential to be titled, we do not set them up
as possible root elements of a file to xinclude.

• MetaDataTitle has a required <title>.

• MetaDataAltTitle has a required <title>, and allows optional <shorttitle>
and <plaintitle>.

• MetaDataSubtitle implicitly has a required <title>, and allows optional
<subtitle>, <shorttitle> and <plaintitle>.

• A <plaintitle> means no markup whatsoever in the content, this is
what “plain” means.

• MetaDataLinedTitle and MetaDataLinedSubtitle are variants of the AltTitle
or Subtitle versions for use on larger divisions with <line> elements used
to suggest line breaks in titles.

• MetaDataCaption implicitly has an optional title.

• Titles may contain external references (url) or internal cross-references
(xref), but implementers need not make them active (i.e., they maybe
text only), since titles are prone to migrating to other locations.

〈70 Metadata〉 ≡

UniqueID =
attribute xml:id {text}

LabelID =
attribute label {text}

Component =
attribute component {text}

Title =
element title {TextLong}

LinedTitle =
element title {LongLine+}

Subtitle =
element subtitle {TextLong}

LinedSubtitle =
element subtitle {LongLine+}

ShortTitle =
element shorttitle {TextShort}

PlainTitle =
element plaintitle {text}

Creator =
element creator {TextShort}

XMLBase = attribute xml:base {text}

53

XMLLang = attribute xml:lang {text}
MetaDataTarget =

UniqueID?,
LabelID?,
Component?,
Index*

MetaDataTitle =
UniqueID?,
LabelID?,
Component?,
XMLBase?,
XMLLang?,
Title,
Index*

MetaDataAltTitle =
UniqueID?,
LabelID?,
Component?,
XMLBase?,
XMLLang?,
Title,
ShortTitle?,
PlainTitle?,
Index*

MetaDataLinedTitle =
UniqueID?,
LabelID?,
Component?,
XMLBase?,
XMLLang?,
(Title | LinedTitle),
ShortTitle?,
PlainTitle?,
Index*

MetaDataSubtitle =
UniqueID?,
LabelID?,
Component?,
XMLBase?,
XMLLang?,
Title,
Subtitle?,
ShortTitle?,
PlainTitle?,
Index*

MetaDataLinedSubtitle =
UniqueID?,
LabelID?,
Component?,
XMLBase?,
XMLLang?,
(Title | LinedTitle),
(Subtitle | LinedSubtitle)?,
ShortTitle?,

54

PlainTitle?,
Index*

MetaDataTitleOptional =
UniqueID?,
LabelID?,
Component?,
XMLBase?,
XMLLang?,
Title?,
Index*

MetaDataAltTitleOptional =
UniqueID?,
LabelID?,
Component?,
XMLBase?,
XMLLang?,
(Title, ShortTitle?, PlainTitle?)?,
Index*

MetaDataTitleCreatorOptional =
UniqueID?,
LabelID?,
Component?,
XMLBase?,
XMLLang?,
Title?,
Creator?,
Index*

MetaDataCaption =
UniqueID?,
LabelID?,
Component?,
XMLBase?,
XMLLang?,
Title?,
Caption,
Index*

45 Miscellaneous
Provisional items, with uncertain futures.

〈71 Miscellaneous or uncertain〉 ≡

46 Organizational Devices
A list generator is a convenient device. It can create appendices, or smaller
table-of-contents at the start of divisions.

Notation can be automatically generated. We restrict its locations to ap-
pendices.

〈72 List generator〉 ≡

55

ListGenerator =
element list-of {

attribute elements {text},
attribute scope {text}?,
attribute divisions {text}?,
attribute empty {"yes" | "no"}?

}
NotationList =

element notation-list {empty}

47 Front Matter
Articles and books have material at the start, which gets organized in inter-
esting ways. minilicense is very restrictive, shortlicense allows references
(e.g. urls). bibinfo is like a very small database whose content migrates to a ti-
tlepage and colophon if titlepage/titlepage-items or colophon/colophon-items
are present. For HTML, titlepage means the page for the frontmatter , and for
LATEX these items migrate to the half-title and title pages. Since it generally
makes no sense as the target of a cross-reference, titlepage does not allow an
@xml:id attribute.

Some notes about new additions to bibinfo.

• version might be useful for books (could be draft or preview for example)
but is mainly for articles, where it’s content could be “authors submitted
version” or “revision 2.” A book might have both a version and an edition,
but editions don’t really apply to articles.

• JATS has permissions but we have copyright. It seems like these have
the same content.

• We introduce keywords (equivalent to JATS kwd-group) which contains a
sequence of keyword elements. There can be multiple keywords elements,
as this can be used for subject classifications, or author keywords, etc.
Attributes on the keywords element can be used to distinguish these:
@authority can be “msc” for Math Subject Classification, in which cas
the <keywords> can also have @variant to specify the year version of the
MSC. The default @authority is “author.”

• To describe the financial support for the work, we use support. This can
go in bibinfo directly or tied directly to an author or authors.

• Slideshows already have a <event>, which we make official here and
use to describe a conference for which the work was prepared. JATS
uses conference for this, and structures it with elements such as date,
accronym, and similar, but we do not go that far.

〈73 Front matter〉 ≡

ArticleFrontMatter =
element frontmatter {

MetaDataTitleOptional,
Bibinfo,
TitlePage,
Abstract?

56

}
BookFrontMatter = element frontmatter {

MetaDataTitleOptional,
Bibinfo,
TitlePage,
ColophonFront?,
Biography*,
Dedication?,
Acknowledgement?,
Preface*

}
Bibinfo =

element bibinfo {
(

(Author+, Editor*)
|
(Editor+)

)?,
((Credit | ColophonCredit)* &
Date? &
Edition? &
Keywords* &
Support? &
Website? &
Copyright?)

}
TitlePage =

element titlepage {
element titlepage-items {empty}

}
Email = element email {text}
PersonName = element personname {TextSimple}
Affiliation =

element affiliation {
Department? &
Institution? &
Location?

}
Department = element department {TextSimple | ShortLine+}
Institution = element institution {TextSimple | ShortLine+}
Support = element support {TextParagraph}
Location = element location {TextSimple | ShortLine+}
Keywords = element keywords {

attribute authority {text}?,
attribute variant {text}?,
Title?,
Keyword+

}
Keyword = element keyword {

attribute primary {"yes"|"no"}?,
TextSimple

}
Edition = element edition {text}
Event = element event {

57

TextLong
}
Author =

element author {
attribute corresponding {"yes" | "no"}?,
attribute xml:id {text}?,
PersonName,
(

(Department? & Institution? & Location?) |
Affiliation+

)?,
Email?,
Biography?,
Support?

}
Editor =

element editor {
PersonName,
(

(Department? & Institution? & Location?) |
Affiliation+

)?,
Email?

}
Credit =

element credit {
Title,
Author+

}
Date =

element date {
mixed {(Character | Generator)*}

}
Abstract =

element abstract {
MetaDataTarget,
BlockText+

}
ColophonCredit = element credit {

element role {TextShort},
element entity {TextLong}

}
ShortLicense = element shortlicense {TextLong}
Website = element website {Url}
Copyright =

element copyright {
element year {TextShort},
element holder {text},
element minilicense {TextShort}?,
ShortLicense?

}
ColophonFront =

element colophon {
MetaDataTarget,

58

element colophon-items {empty}
}

Biography =
element biography {

MetaDataTitleOptional,
(BlockStatementNoCaption | ParagraphsNoNumber)+

}
Dedication =

element dedication {
MetaDataTitleOptional,
(Paragraph|ParagraphLined)+

}
Acknowledgement =

element acknowledgement {
MetaDataTitleOptional,
(BlockStatementNoCaption | ParagraphsNoNumber)+

}
Preface =

element preface {
MetaDataTitleOptional,
(

(
(BlockStatementNoCaption | ParagraphsNoNumber)+,
Attribution*

)
|
(

(BlockStatementNoCaption | ParagraphsNoNumber)*,
Contributors,
(BlockStatementNoCaption | ParagraphsNoNumber)*

)
)

}

48 Front matter (experimental)
A few simple tweaks to frontmatter elements.

We give an alternative definition of the two elements in the ColophonFront
that are different.

〈74 Front matter (dev)〉 ≡

ShortLicense_X =
element shortlicense {

TextLong &
Footnote*

}
ShortLicense |= ShortLicense_X
Website_X = element website {

element name {TextShort},
element address {text}

}
Website |= Website_X

59

49 Contributors
A single contributors element may be placed into a preface and is a list
of contributor. It can be optionally preceded, or followed, by all the usual
things that can go into any preface. An AuthorByline is a special instance of
acknowledging a contributor on a division.

〈75 Contributor〉 ≡

Contributor =
element contributor {

MetaDataTarget,
PersonName,
(

(
Department?,
Institution?,
Location?
)
|
Affiliation+

)?,
Email?

}
Contributors =

element contributors {
Contributor+

}
AuthorByline =

element author {(TextSimple|Xref)}

50 Back Matter
Articles and books have material at the end, structured as a sequence of
appendix. A solutions division should be numbered and rendered as if it
was one of the appendix, and so can mix-in in any order.

〈76 Back matter〉 ≡

ArticleBackMatter =
element backmatter {

MetaDataTitleOptional,
(ArticleAppendix|Solutions)*,
References?,
IndexDivision?,
ColophonBack?

}
BookBackMatter =

element backmatter {
MetaDataTitleOptional,
(BookAppendix|Solutions)*,
References?,
IndexDivision?,

60

ColophonBack?
}

ColophonBack =
element colophon {

MetaDataTarget,
(BlockText | SideBySideNoCaption | SideBySideGroupNoCaption)+

}

51 Document Information
The docinfo section is like a small database for the document.

〈77 Document information〉 ≡

DocInfo =
element docinfo {

XMLBase?,
XMLLang?,
Configuration+

}

〈Brand logo 78 [60]〉
〈Preambles 79 [60]〉
〈LATEX macros 80 [61]〉
〈Cross-reference text style 81 [61]〉
〈Project initialism 82 [61]〉
〈Feedback link 83 [61]〉
〈Element renaming 84 [61]〉
〈Image archives 85 [62]〉
〈Author biographies 86 [62]〉
〈Numbering of part divisions 87 [62]〉
〈Program optionsParsons options 88 [62]〉
A nice icon near the top of an electronic version is a nice touch, and can link
back to a project landing page.

〈78 Brand logo〉 ≡

Configuration |=
element brandlogo {

attribute url {text}?,
attribute source {text}

}

We add some items which will become parts of preambles to support math
in LATEX syntax, <latex-image>, and <asymptote>. LATEX packages, and their
cousins, MathJax extensions, can be specified to support mathematics elements
(<m> and friends). Images specified by LATEX or Asymptote syntax sometimes
need extra information in their preambles.

〈79 Preambles〉 ≡

Configuration |=
element math-package {

attribute latex-name {text},

61

attribute mathjax-name {text}
}*

Configuration |=
element latex-image-preamble {text}

Configuration |=
element asymptote-preamble {text}

Macros for LATEX are shared across implementations. This should move under
some general LATEX section, the name is too vague.
〈80 LATEX macros〉 ≡

Configuration |=
element macros {text}

The style of text used in a cross-reference (the xref element) is contained in
the source and uses the same per-item choices.
〈81 Cross-reference text style〉 ≡

Configuration |=
element

cross-references {
attribute text { XrefTextStyle }

}

An initialism is a useful short version of a book title.
〈82 Project initialism〉 ≡

Configuration |=
element initialism {text}

Online versions can request feedback via a URL for some form. Maybe this
should really be an href for consistency. There should be a device to provide
text to go with the link.
〈83 Feedback link〉 ≡

FeedbackUrl = element url {text}
Configuration |=

element feedback {
FeedbackUrl

}

Some elements can be renamed. This should be a rare event. Since the con-
tent of this element can (optionally) be specified in different languages, the
@xml:lang attribute is appropriate.1

〈84 Element renaming〉 ≡

Configuration |=
element rename {

attribute element {text},
attribute xml:lang {text}?,
text

}

1https://www.w3.org/International/questions/qa-when-xmllang

62

https://www.w3.org/International/questions/qa-when-xmllang

Image archives have some global specification. The from attribute gives a root
for only working on a subtree of the document. The content is a comma-
separated list of file extensions.

〈85 Image archives〉 ≡

Configuration |=
element images {

element archive {
attribute from {text}?,
text

}+
}

An author biography (or several) might be a paragraph or two each, or each
one might be several pages. This style can be controlled.

〈86 Author biographies〉 ≡

Configuration |=
element author-biographies {

attribute length {"short" | "long"}
}

Many aspects of numbering are configurable. These choices affect the numbers
printed, and so are an author’s decision, and hence run with the source.

〈87 Numbering of part divisions〉 ≡

Configuration |=
element numbering {

element division {
attribute part {"decorative" | "structural"}

}?
}

Some global defaults can be set for programs and Parsons problems.

〈88 Program optionsParsons options〉 ≡

Configuration |=
element programs {

attribute language {text}?,
attribute compiler-args {text}?,
attribute download {"yes"|"no"}?,
attribute linenumbers {"yes"|"no"}?,
attribute linker-args {text}?,
attribute interpreter-args {text}?,
attribute timeout {text}?

}

Configuration |=
element parsons {

attribute language {text}?
}

63

52 Document Information (experimental)
We extend the docinfo to include new elements. We add each to the Configuration
group.

A textbook can have a blurb (roughly what you would expect on the back
of the book), and optionally a @shelf that tells Runestone how to categorize
the book.

〈89 Blurb〉 ≡

Configuration |=
element blurb {

attribute shelf {text},
text

}

〈90 Document ID〉 ≡

Configuration |=
element document-id {

attribute edition {text}?,
text

}

Now we collect these to add to the dev schema.

〈91 Experimental Document Info〉 ≡
〈Blurb 89 [63]〉
〈Document ID 90 [63]〉

53 Hierarchical Structure
We collect all the specifications, roughly in a top-down order, so the generated
schema files have a rational ordering to them, even if the order presented here
is different.

〈92 Hierarchical Structure〉 ≡
Root of file: pretext.rnc

grammar {

〈Start elements 1 [2]〉
〈Gross structure 2 [2]〉
〈Document types 3 [3]〉
〈Divisions 4 [4]〉
〈Front matter 73 [55]〉
〈Back matter 76 [59]〉
〈Paragraphs division 5 [6]〉
〈Specialized divisions 6 [7]〉
〈Blocks 32 [22]〉
〈Common components of blocks 33 [23]〉
〈Introductions, conclusions, headnotes 34 [24]〉

64

〈Objectives and outcomes 38 [26]〉
〈Block quotes 39 [26]〉
〈Verbatim displays 40 [27]〉
〈Lists 41 [29]〉
〈Definitions 42 [29]〉
〈Theorems, and similar 43 [30]〉
〈Axioms, and similar 45 [31]〉
〈Examples, and similar 65 [48]〉
〈Projects, and similar 46 [31]〉
〈Remarks, and similar 47 [32]〉
〈Computation, and similar 48 [32]〉
〈Asides, and similar 49 [32]〉
〈Assemblages 50 [33]〉
〈Captioned and titled displays 51 [33]〉
〈Side-by-side layouts 54 [36]〉
〈Images 55 [37]〉
〈Tabular display 52 [34]〉
〈Sage code 56 [39]〉
〈Interactives 57 [39]〉
〈Video and audio 59 [42]〉
〈Exercises 61 [43]〉
〈Poems 60 [42]〉
〈Bibliography 63 [47]〉
〈Glossary 64 [48]〉
〈Contributor 75 [59]〉
〈WeBWorK 66 [49]〉
〈Literate programming 67 [51]〉
〈Miscellaneous or uncertain 71 [54]〉
〈Frequent constructions 68 [51]〉
〈Paragraphs 10 [13]〉
〈Running text 9 [12]〉
〈Footnotes 36 [25]〉
〈Index entries 37 [25]〉
〈Cross-references 35 [24]〉
〈Mathematics 30 [20]〉
〈Verbatim text 22 [18]〉
〈Text groups 29 [20]〉
〈Text generators 19 [17]〉
〈Fill-in blank character 20 [18]〉
〈SI units 21 [18]〉
〈Characters 18 [17]〉
〈List generator 72 [54]〉
〈Document information 77 [60]〉

}

54 Development Schema
Here we collect all fragments that are still experimental and put them in a rnc
file that includes the stable schema.
〈93 Development Schema〉 ≡
Root of file: pretext-dev.rnc

65

namespace xhtml = "http://www.w3.org/1999/xhtml"
grammar {

include "pretext.rnc"

〈Interactives 58 [39]〉
〈Front matter (dev) 74 [58]〉
〈Experimental Document Info 91 [63]〉
〈Proofs, and similar 44 [30]〉
〈Figure (experimental) 53 [35]〉
〈Worksheets (experimental) 8 [8]〉
〈Solutions (experimental) 7 [8]〉
〈 [??]〉
〈Mathematics (experimental) 31 [21]〉
〈Exercises (experimental) 62 [44]〉

}

A Fragments

Fragment 1 Start elements
Fragment 2 Gross structure
Fragment 3 Document types
Fragment 4 Divisions
Fragment 5 Paragraphs division
Fragment 6 Specialized divisions
Fragment 7 Solutions (experimental)
Fragment 8 Worksheets (experimental)
Fragment 9 Running text
Fragment 10 Paragraphs
Fragment 11 Delimiter characters
Fragment 12 Dash characters
Fragment 13 Arithmetic characters
Fragment 14 Exotic characters
Fragment 15 Icon characters
Fragment 16 Keyboard characters
Fragment 17 Music characters
Fragment 18 Characters
Fragment 19 Text generators
Fragment 20 Fill-in blank character
Fragment 21 SI units
Fragment 22 Verbatim text
Fragment 23 Abbreviations
Fragment 24 Delimited groups
Fragment 25 Highlighted groups
Fragment 26 Editing groups
Fragment 27 XML syntax groups
Fragment 28 Taxonomic groups
Fragment 29 Text groups

(Continued on next page)

66

Fragment 30 Mathematics
Fragment 31 Mathematics (experimental)
Fragment 32 Blocks
Fragment 33 Common components of blocks
Fragment 34 Introductions, conclusions, headnotes
Fragment 35 Cross-references
Fragment 36 Footnotes
Fragment 37 Index entries
Fragment 38 Objectives and outcomes
Fragment 39 Block quotes
Fragment 40 Verbatim displays
Fragment 41 Lists
Fragment 42 Definitions
Fragment 43 Theorems, and similar
Fragment 44 Proofs, and similar
Fragment 45 Axioms, and similar
Fragment 46 Projects, and similar
Fragment 47 Remarks, and similar
Fragment 48 Computation, and similar
Fragment 49 Asides, and similar
Fragment 50 Assemblages
Fragment 51 Captioned and titled displays
Fragment 52 Tabular display
Fragment 53 Figure (experimental)
Fragment 54 Side-by-side layouts
Fragment 55 Images
Fragment 56 Sage code
Fragment 57 Interactives
Fragment 58 Interactives
Fragment 59 Video and audio
Fragment 60 Poems
Fragment 61 Exercises
Fragment 62 Exercises (experimental)
Fragment 63 Bibliography
Fragment 64 Glossary
Fragment 65 Examples, and similar
Fragment 66 WeBWorK
Fragment 67 Literate programming
Fragment 68 Frequent constructions
Fragment 69 Attribution
Fragment 70 Metadata
Fragment 71 Miscellaneous or uncertain
Fragment 72 List generator
Fragment 73 Front matter
Fragment 74 Front matter (dev)
Fragment 75 Contributor
Fragment 76 Back matter
Fragment 77 Document information
Fragment 78 Brand logo
Fragment 79 Preambles
Fragment 80 LATEX macros
Fragment 81 Cross-reference text style

(Continued on next page)

67

Fragment 82 Project initialism
Fragment 83 Feedback link
Fragment 84 Element renaming
Fragment 85 Image archives
Fragment 86 Author biographies
Fragment 87 Numbering of part divisions
Fragment 88 Program optionsParsons options
Fragment 89 Blurb
Fragment 90 Document ID
Fragment 91 Experimental Document Info
Fragment 92 Hierarchical Structure
Fragment 93 Development Schema

68

	Start Elements
	Gross Structure
	Document Types
	Document Structure
	Lightweight Divisions
	Specialized Divisions
	Solutions (experimental)
	Worksheets (experimental)
	Paragraphs
	Mathematics
	Mathematics (experimental)
	Blocks
	Introductions, Conclusions, and Headnotes
	References
	Objectives
	Block Quotes
	Verbatim Text
	Lists
	Definitions
	Theorems, And Other Results
	Proof-like (experimental)
	Axioms and Other Mathematical Statements
	Projects and Activities
	Remarks and Other Comments
	Computations and Technology
	Asides
	Assemblages
	Figures, Tables, Listings and Named Lists
	Figure (experimental)
	Side-By-Side Layout
	Images and Graphics
	Sage Code
	Legacy Interactive Elements
	Interactive Elements (experimental)
	Audio and Video
	Poetry
	Exercises
	Exercises (experimental)
	Bibliography
	Glossary
	Examples and Questions
	WeBWorK Exercises
	Literate Programming
	Frequently Used
	Miscellaneous
	Organizational Devices
	Front Matter
	Front matter (experimental)
	Contributors
	Back Matter
	Document Information
	Document Information (experimental)
	Hierarchical Structure
	Development Schema
	Fragments

