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Preface to the Solutions Manual

This contains the publicly available hints and answers for the PreTeXt sample book. State-
ments of the exercises are not reproduced.

See the text itself for much more information about the book.
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1 Preliminaries

1.4 Exercises

Warm-up

This is a meaningless subdivision of the exercises for the sake of testing output.
1.4.1. Suppose that

A = {x : x ∈ N and x is even},
B = {x : x ∈ N and x is prime},
C = {x : x ∈ N and x is a multiple of 5}.

Describe each of the following sets.

(a) A ∩B

(b) B ∩ C

(c) A ∪B

(d) A ∩ (B ∪ C)

1.4.2. If A = {a, b, c}, B = {1, 2, 3}, C = {x}, and D = ∅, list all of the elements in each
of the following sets.

(a) A×B

(b) B ×A

(c) A×B × C

(d) A×D

Hint. (a) A×B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)}; (d) A×D = ∅.
1.4.3. Find an example of two nonempty sets A and B for which A×B = B ×A is true.
1.4.4. Prove A ∪ ∅ = A and A ∩ ∅ = ∅.
1.4.5. Prove A ∪B = B ∪A and A ∩B = B ∩A.
1.4.6. Prove A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
Hint. If x ∈ A ∪ (B ∩ C), then either x ∈ A or x ∈ B ∩ C. Thus, x ∈ A ∪ B and A ∪ C.
Hence, x ∈ (A ∪ B) ∩ (A ∪ C). Therefore, A ∪ (B ∩ C) ⊂ (A ∪ B) ∩ (A ∪ C). Conversely,
if x ∈ (A ∪ B) ∩ (A ∪ C), then x ∈ A ∪ B and A ∪ C. Thus, x ∈ A or x is in both B
and C. So x ∈ A ∪ (B ∩ C) and therefore (A ∪ B) ∩ (A ∪ C) ⊂ A ∪ (B ∩ C). Hence,
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
1.4.7. Prove A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
1.4.8. Prove A ⊂ B if and only if A ∩B = A.
1.4.9. Prove (A ∩B)′ = A′ ∪B′.

1
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2 1 PRELIMINARIES

1.4.10. Prove A ∪B = (A ∩B) ∪ (A \B) ∪ (B \A).
Hint. (A∩B)∪(A\B)∪(B\A) = (A∩B)∪(A∩B′)∪(B∩A′) = [A∩(B∪B′)]∪(B∩A′) =
A ∪ (B ∩A′) = (A ∪B) ∩ (A ∪A′) = A ∪B.
1.4.11. Prove (A ∪B)× C = (A× C) ∪ (B × C).
1.4.12. Prove (A ∩B) \B = ∅.
1.4.13. Prove (A ∪B) \B = A \B.
1.4.14. Prove A \ (B ∪ C) = (A \B) ∩ (A \ C).
Hint. A\(B∪C) = A∩(B∪C)′ = (A∩A)∩(B′∩C ′) = (A∩B′)∩(A∩C ′) = (A\B)∩(A\C).

More Exercises

This is a meaningless subdivision of the exercises for the sake of testing output.
1.4.15. Prove A ∩ (B \ C) = (A ∩B) \ (A ∩ C).
1.4.16. Prove (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).
1.4.17. Which of the following relations f : Q → Q define a mapping? In each case, supply
a reason why f is or is not a mapping.

(a) f(p/q) =
p+ 1

p− 2

(b) f(p/q) =
3p

3q

(c) f(p/q) =
p+ q

q2

(d) f(p/q) =
3p2

7q2
− p

q
1.4.18. Determine which of the following functions are one-to-one and which are onto. If
the function is not onto, determine its range.

(a) f : R → R defined by f(x) = ex

(b) f : Z → Z defined by f(n) = n2 + 3

(c) f : R → R defined by f(x) = sinx

(d) f : Z → Z defined by f(x) = x2

Hint. (a) f is one-to-one but not onto. f(R) = {x ∈ R : x > 0}. (c) f is neither one-to-one
nor onto. f(R) = {x : −1 ≤ x ≤ 1}.
1.4.19. Let f : A → B and g : B → C be invertible mappings; that is, mappings such that
f−1 and g−1 exist. Show that (g ◦ f)−1 = f−1 ◦ g−1.
1.4.20.

(a) Define a function f : N → N that is one-to-one but not onto.

(b) Define a function f : N → N that is onto but not one-to-one.

Hint. (a) f(n) = n+ 1.
1.4.21. Prove the relation defined on R2 by (x1, y1) ∼ (x2, y2) if x21 + y21 = x22 + y22 is an
equivalence relation.
1.4.22. Let f : A → B and g : B → C be maps.

(a) If f and g are both one-to-one functions, show that g ◦ f is one-to-one.
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3

(b) If g ◦ f is onto, show that g is onto.

(c) If g ◦ f is one-to-one, show that f is one-to-one.

(d) If g ◦ f is one-to-one and f is onto, show that g is one-to-one.

(e) If g ◦ f is onto and g is one-to-one, show that f is onto.

Hint. (a) Let x, y ∈ A. Then g(f(x)) = (g ◦ f)(x) = (g ◦ f)(y) = g(f(y)). Thus,
f(x) = f(y) and x = y, so g ◦ f is one-to-one. (b) Let c ∈ C, then c = (g ◦ f)(x) = g(f(x))
for some x ∈ A. Since f(x) ∈ B, g is onto.
1.4.23. Define a function on the real numbers by

f(x) =
x+ 1

x− 1
.

What are the domain and range of f? What is the inverse of f? Compute f ◦ f−1 and
f−1 ◦ f .
1.4.24. Let f : X → Y be a map with A1, A2 ⊂ X and B1, B2 ⊂ Y .

(a) Prove f(A1 ∪A2) = f(A1) ∪ f(A2).

(b) Prove f(A1 ∩A2) ⊂ f(A1) ∩ f(A2). Give an example in which equality fails.

(c) Prove f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2), where

f−1(B) = {x ∈ X : f(x) ∈ B}.

(d) Prove f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

(e) Prove f−1(Y \B1) = X \ f−1(B1).

Hint. (a) Let y ∈ f(A1 ∪ A2). Then there exists an x ∈ A1 ∪ A2 such that f(x) = y.
Hence, y ∈ f(A1) or f(A2). Therefore, y ∈ f(A1) ∪ f(A2). Consequently, f(A1 ∪ A2) ⊂
f(A1)∪f(A2). Conversely, if y ∈ f(A1)∪f(A2), then y ∈ f(A1) or f(A2). Hence, there exists
an x ∈ A1 or there exists an x ∈ A2 such that f(x) = y. Thus, there exists an x ∈ A1 ∪A2

such that f(x) = y. Therefore, f(A1)∪f(A2) ⊂ f(A1∪A2), and f(A1∪A2) = f(A1)∪f(A2).
1.4.25. Determine whether or not the following relations are equivalence relations on the
given set. If the relation is an equivalence relation, describe the partition given by it. If the
relation is not an equivalence relation, state why it fails to be one.

(a) x ∼ y in R if x ≥ y

(b) m ∼ n in Z if mn > 0

(c) x ∼ y in R if |x− y| ≤ 4

(d) m ∼ n in Z if m ≡ n (mod 6)

1.4.26. Define a relation ∼ on R2 by stating that (a, b) ∼ (c, d) if and only if a2+b2 ≤ c2+d2.
Show that ∼ is reflexive and transitive but not symmetric.
1.4.27. Show that an m× n matrix gives rise to a well-defined map from Rn to Rm.
1.4.28. Find the error in the following argument by providing a counterexample. “The
reflexive property is redundant in the axioms for an equivalence relation. If x ∼ y, then
y ∼ x by the symmetric property. Using the transitive property, we can deduce that x ∼ x.”
Hint. Let X = N ∪ {

√
2 } and define x ∼ y if x+ y ∈ N.
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4 1 PRELIMINARIES

1.4.29. Projective Real Line. Define a relation on R2 \ {(0, 0)} by letting (x1, y1) ∼
(x2, y2) if there exists a nonzero real number λ such that (x1, y1) = (λx2, λy2). Prove that
∼ defines an equivalence relation on R2 \ (0, 0). What are the corresponding equivalence
classes? This equivalence relation defines the projective line, denoted by P(R), which is very
important in geometry.

1.5 Sage Exercises

1.5.1. This exercise is just about making sure you know how to use Sage. Login to a Sage
Notebook server and create a new worksheet. Do some non-trivial computation, maybe
a pretty plot or some gruesome numerical computation to an insane precision. Create an
interesting list and experiment with it some. Maybe include some nicely formatted text or
TEX using the included mini-word-processor of the Sage Notebook (hover until a blue bar
appears between cells and then shift-click).

Use whatever mechanism your instructor has in place for submitting your work. Or save
your worksheet and then trade worksheets via email (or another electronic method) with a
classmate.
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2 The Integers

2.4 Exercises
2.4.1. Prove that

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

for n ∈ N.
Answer. The base case, S(1) : [1(1 + 1)(2(1) + 1)]/6 = 1 = 12 is true.

Assume that S(k) : 12 + 22 + · · ·+ k2 = [k(k + 1)(2k + 1)]/6 is true. Then

12 + 22 + · · ·+ k2 + (k + 1)2 = [k(k + 1)(2k + 1)]/6 + (k + 1)2

= [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6,

and so S(k + 1) is true. Thus, S(n) is true for all positive integers n.
2.4.2. Prove that

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4

for n ∈ N.
2.4.3. Prove that n! > 2n for n ≥ 4.
Answer. The base case, S(4) : 4! = 24 > 16 = 24 is true. Assume S(k) : k! > 2k is true.
Then (k + 1)! = k!(k + 1) > 2k · 2 = 2k+1, so S(k + 1) is true. Thus, S(n) is true for all
positive integers n.
2.4.4. Prove that

x+ 4x+ 7x+ · · ·+ (3n− 2)x =
n(3n− 1)x

2

for n ∈ N.
2.4.5. Prove that 10n+1 + 10n + 1 is divisible by 3 for n ∈ N.
2.4.6. Prove that 4 · 102n + 9 · 102n−1 + 5 is divisible by 99 for n ∈ N.
2.4.7. Show that

n
√
a1a2 · · · an ≤ 1

n

n∑
k=1

ak.

2.4.8. Use induction to prove that 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1 for n ∈ N.
2.4.9. Prove the Leibniz rule for f (n)(x), where f (n) is the nth derivative of f ; that is, show
that

(fg)(n)(x) =

n∑
k=0

(
n

k

)
f (k)(x)g(n−k)(x).

Hint. Follow the proof in Example 2.1.4.

5
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6 2 THE INTEGERS

2.4.10. Prove that
1

2
+

1

6
+ · · ·+ 1

n(n+ 1)
=

n

n+ 1

for n ∈ N.
2.4.11. If x is a nonnegative real number, then show that (1+x)n−1 ≥ nx for n = 0, 1, 2, . . ..
Hint. The base case, S(0) : (1+x)0−1 = 0 ≥ 0 = 0·x is true. Assume S(k) : (1+x)k−1 ≥
kx is true. Then

(1 + x)k+1 − 1 = (1 + x)(1 + x)k − 1

= (1 + x)k + x(1 + x)k − 1

≥ kx+ x(1 + x)k

≥ kx+ x

= (k + 1)x,

so S(k + 1) is true. Therefore, S(n) is true for all positive integers n.
2.4.12. Power Sets. Let X be a set. Define the power set of X, denoted P(X), to be
the set of all subsets of X. For example,

P({a, b}) = {∅, {a}, {b}, {a, b}}.

For every positive integer n, show that a set with exactly n elements has a power set with
exactly 2n elements.
2.4.13. Prove that the two principles of mathematical induction stated in Section 2.1 are
equivalent.
2.4.14. Show that the Principle of Well-Ordering for the natural numbers implies that 1
is the smallest natural number. Use this result to show that the Principle of Well-Ordering
implies the Principle of Mathematical Induction; that is, show that if S ⊂ N such that 1 ∈ S
and n+ 1 ∈ S whenever n ∈ S, then S = N.
2.4.15. For each of the following pairs of numbers a and b, calculate gcd(a, b) and find
integers r and s such that gcd(a, b) = ra+ sb.

(a) 14 and 39

(b) 234 and 165

(c) 1739 and 9923

(d) 471 and 562

(e) 23,771 and 19,945

(f) −4357 and 3754
2.4.16. Let a and b be nonzero integers. If there exist integers r and s such that ar+bs = 1,
show that a and b are relatively prime.
2.4.17. Fibonacci Numbers. The Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, . . . .

We can define them inductively by f1 = 1, f2 = 1, and fn+2 = fn+1 + fn for n ∈ N.

(a) Prove that fn < 2n.

(b) Prove that fn+1fn−1 = f2
n + (−1)n, n ≥ 2.

(c) Prove that fn = [(1 +
√
5 )n − (1−

√
5 )n]/2n

√
5.

(d) Show that limn→∞ fn/fn+1 = (
√
5− 1)/2.
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7

(e) Prove that fn and fn+1 are relatively prime.

Hint. For Item 2.4.17.a and Item 2.4.17.b use mathematical induction. Item 2.4.17.c
Show that f1 = 1, f2 = 1, and fn+2 = fn+1 + fn. Item 2.4.17.d Use part Item 2.4.17.c.
Item 2.4.17.e Use part Item 2.4.17.b and Exercise 2.4.16.
2.4.18. Let a and b be integers such that gcd(a, b) = 1. Let r and s be integers such that
ar + bs = 1. Prove that

gcd(a, s) = gcd(r, b) = gcd(r, s) = 1.

2.4.19. Let x, y ∈ N be relatively prime. If xy is a perfect square, prove that x and y must
both be perfect squares.
Hint. Use the Fundamental Theorem of Arithmetic.
2.4.20. Using the division algorithm, show that every perfect square is of the form 4k or
4k + 1 for some nonnegative integer k.
2.4.21. Suppose that a, b, r, s are pairwise relatively prime and that

a2 + b2 = r2

a2 − b2 = s2.

Prove that a, r, and s are odd and b is even.
2.4.22. Let n ∈ N. Use the division algorithm to prove that every integer is congruent
mod n to precisely one of the integers 0, 1, . . . , n− 1. Conclude that if r is an integer, then
there is exactly one s in Z such that 0 ≤ s < n and [r] = [s]. Hence, the integers are indeed
partitioned by congruence mod n.
2.4.23. Define the least common multiple of two nonzero integers a and b, denoted by
lcm(a, b), to be the nonnegative integer m such that both a and b divide m, and if a and b
divide any other integer n, then m also divides n. Prove that any two integers a and b have
a unique least common multiple.
Hint. Let S = {s ∈ N : a | s, b | s}. Then S ̸= ∅, since |ab| ∈ S. By the Principle of
Well-Ordering, S contains a least element m. To show uniqueness, suppose that a | n and
b | n for some n ∈ N. By the division algorithm, there exist unique integers q and r such
that n = mq + r, where 0 ≤ r < m. Since a and b divide both m, and n, it must be the
case that a and b both divide r. Thus, r = 0 by the minimality of m. Therefore, m | n.
2.4.24. If d = gcd(a, b) and m = lcm(a, b), prove that dm = |ab|.
2.4.25. Show that lcm(a, b) = ab if and only if gcd(a, b) = 1.
2.4.26. Prove that gcd(a, c) = gcd(b, c) = 1 if and only if gcd(ab, c) = 1 for integers a, b,
and c.
2.4.27. Let a, b, c ∈ Z. Prove that if gcd(a, b) = 1 and a | bc, then a | c.
Hint. Since gcd(a, b) = 1, there exist integers r and s such that ar + bs = 1. Thus,
acr + bcs = c. Since a divides both bc and itself, a must divide c.
2.4.28. Let p ≥ 2. Prove that if 2p − 1 is prime, then p must also be prime.
2.4.29. Prove that there are an infinite number of primes of the form 6n+ 5.
Hint. Every prime must be of the form 2, 3, 6n + 1, or 6n + 5. Suppose there are only
finitely many primes of the form 6k + 5.
2.4.30. Prove that there are an infinite number of primes of the form 4n− 1.
2.4.31. Using the fact that 2 is prime, show that there do not exist integers p and q such
that p2 = 2q2. Demonstrate that therefore

√
2 cannot be a rational number.
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8 2 THE INTEGERS

2.5 Programming Exercises

2.5.1. The Sieve of Eratosthenes. One method of computing all of the prime numbers
less than a certain fixed positive integer N is to list all of the numbers n such that 1 < n < N .
Begin by eliminating all of the multiples of 2. Next eliminate all of the multiples of 3. Now
eliminate all of the multiples of 5. Notice that 4 has already been crossed out. Continue
in this manner, noticing that we do not have to go all the way to N ; it suffices to stop at√
N . Using this method, compute all of the prime numbers less than N = 250. We can also

use this method to find all of the integers that are relatively prime to an integer N . Simply
eliminate the prime factors of N and all of their multiples. Using this method, find all of
the numbers that are relatively prime to N = 120. Using the Sieve of Eratosthenes, write
a program that will compute all of the primes less than an integer N .
2.5.2. Let N0 = N ∪ {0}. Ackermann’s function is the function A : N0 × N0 → N0 defined
by the equations

A(0, y) = y + 1

A(x+ 1, 0) = A(x, 1)

A(x+ 1, y + 1) = A(x,A(x+ 1, y)).

Use this definition to compute A(3, 1). Write a program to evaluate Ackermann’s func-
tion. Modify the program to count the number of statements executed in the program when
Ackermann’s function is evaluated. How many statements are executed in the evaluation of
A(4, 1)? What about A(5, 1)?
2.5.3. Write a computer program that will implement the Euclidean algorithm. The
program should accept two positive integers a and b as input and should output gcd(a, b)
as well as integers r and s such that

gcd(a, b) = ra+ sb.

2.6 Sage Exercises

2.6.1. Use the next_prime() command to construct two different 8-digit prime numbers
and save them in variables named a and b.
2.6.2. Use the .is_prime() method to verify that your primes a and b are really prime.
2.6.3. Verify that 1 is the greatest common divisor of your two primes from the previous
exercises.
2.6.4. Find two integers that make a “linear combination” of your two primes equal to 1.
Include a verification of your result.
2.6.5. Determine a factorization into powers of primes for c = 4598 037 234.
2.6.6. Write a compute cell that defines the same value of c again, and then defines a
candidate divisor of c named d. The third line of the cell should return True if and only if
d is a divisor of c. Illustrate the use of your cell by testing your code with d = 7 and in a
new copy of the cell, testing your code with d = 11.
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3 Groups

3.5 Exercises

3.5.1. Find all x ∈ Z satisfying each of the following equations.

(a) 3x ≡ 2 (mod 7)

(b) 5x+ 1 ≡ 13 (mod 23)

(c) 5x+ 1 ≡ 13 (mod 26)

(d) 9x ≡ 3 (mod 5)

(e) 5x ≡ 1 (mod 6)

(f) 3x ≡ 1 (mod 6)

Hint. (a) 3 + 7Z = {. . . ,−4, 3, 10, . . .}; (c) 18 + 26Z; (e) 5 + 6Z.
3.5.2. Which of the following multiplication tables defined on the set G = {a, b, c, d} form
a group? Support your answer in each case.

(a)
◦ a b c d

a a c d a

b b b c d

c c d a b

d d a b c

(b)
◦ a b c d

a a b c d

b b a d c

c c d a b

d d c b a

(c)
◦ a b c d

a a b c d

b b c d a

c c d a b

d d a b c

(d)
◦ a b c d

a a b c d

b b a c d

c c b a d

d d d b c

Hint. (a) Not a group; (c) a group.
3.5.3. Write out Cayley tables for groups formed by the symmetries of a rectangle and for
(Z4,+). How many elements are in each group? Are the groups the same? Why or why
not?
3.5.4. Describe the symmetries of a rhombus and prove that the set of symmetries forms
a group. Give Cayley tables for both the symmetries of a rectangle and the symmetries of
a rhombus. Are the symmetries of a rectangle and those of a rhombus the same?
3.5.5. Describe the symmetries of a square and prove that the set of symmetries is a group.
Give a Cayley table for the symmetries. How many ways can the vertices of a square be
permuted? Is each permutation necessarily a symmetry of the square? The symmetry group

9
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10 3 GROUPS

of the square is denoted by D4.
3.5.6. Give a multiplication table for the group U(12).
Hint.

· 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

3.5.7. Let S = R \ {−1} and define a binary operation on S by a ∗ b = a + b + ab. Prove
that (S, ∗) is an abelian group.
3.5.8. Give an example of two elements A and B in GL2(R) with AB ̸= BA.
Hint. Pick two matrices. Almost any pair will work.
3.5.9. Prove that the product of two matrices in SL2(R) has determinant one.
3.5.10. Prove that the set of matrices of the form1 x y

0 1 z

0 0 1


is a group under matrix multiplication. This group, known as the Heisenberg group, is
important in quantum physics. Matrix multiplication in the Heisenberg group is defined by1 x y

0 1 z

0 0 1

1 x′ y′

0 1 z′

0 0 1

 =

1 x+ x′ y + y′ + xz′

0 1 z + z′

0 0 1

 .

3.5.11. Prove that det(AB) = det(A) det(B) in GL2(R). Use this result to show that the
binary operation in the group GL2(R) is closed; that is, if A and B are in GL2(R), then
AB ∈ GL2(R).
3.5.12. Let Zn

2 = {(a1, a2, . . . , an) : ai ∈ Z2}. Define a binary operation on Zn
2 by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn).

Prove that Zn
2 is a group under this operation. This group is important in algebraic coding

theory.
3.5.13. Show that R∗ = R \ {0} is a group under the operation of multiplication.
3.5.14. Given the groups R∗ and Z, let G = R∗ × Z. Define a binary operation ◦ on G by
(a,m) ◦ (b, n) = (ab,m+ n). Show that G is a group under this operation.
3.5.15. Prove or disprove that every group containing six elements is abelian.
Hint. There is a nonabelian group containing six elements.
3.5.16. Give a specific example of some group G and elements g, h ∈ G where (gh)n ̸= gnhn.
Hint. Look at the symmetry group of an equilateral triangle or a square.
3.5.17. Give an example of three different groups with eight elements. Why are the groups
different?
Hint. The are five different groups of order 8.
3.5.18. Show that there are n! permutations of a set containing n items.
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Hint. Let
σ =

(
1 2 · · · n

a1 a2 · · · an

)
be in Sn. All of the ais must be distinct. There are n ways to choose a1, n − 1 ways to
choose a2, . . ., 2 ways to choose an−1, and only one way to choose an. Therefore, we can
form σ in n(n− 1) · · · 2 · 1 = n! ways.
3.5.19. Show that

0 + a ≡ a+ 0 ≡ a (mod n)

for all a ∈ Zn.
3.5.20. Prove that there is a multiplicative identity for the integers modulo n:

a · 1 ≡ a (mod n).

3.5.21. For each a ∈ Zn find an element b ∈ Zn such that

a+ b ≡ b+ a ≡ 0 (mod n).

3.5.22. Show that addition and multiplication mod $n$ are well defined operations. That
is, show that the operations do not depend on the choice of the representative from the
equivalence classes mod n.
3.5.23. Show that addition and multiplication mod n are associative operations.
3.5.24. Show that multiplication distributes over addition modulo n:

a(b+ c) ≡ ab+ ac (mod n).

3.5.25. Let a and b be elements in a group G. Prove that abna−1 = (aba−1)n for n ∈ Z.
Hint.

(aba−1)n = (aba−1)(aba−1) · · · (aba−1)

= ab(aa−1)b(aa−1)b · · · b(aa−1)ba−1

= abna−1.

3.5.26. Let U(n) be the group of units in Zn. If n > 2, prove that there is an element
k ∈ U(n) such that k2 = 1 and k ̸= 1.
3.5.27. Prove that the inverse of g1g2 · · · gn is g−1

n g−1
n−1 · · · g

−1
1 .

3.5.28. Prove the remainder of Proposition 3.2.14: if G is a group and a, b ∈ G, then the
equation xa = b has a unique solution in G.
3.5.29. Prove Theorem 3.2.16.
3.5.30. Prove the right and left cancellation laws for a group G; that is, show that in the
group G, ba = ca implies b = c and ab = ac implies b = c for elements a, b, c ∈ G.
3.5.31. Show that if a2 = e for all elements a in a group G, then G must be abelian.
Hint. Since abab = (ab)2 = e = a2b2 = aabb, we know that ba = ab.
3.5.32. Show that if G is a finite group of even order, then there is an a ∈ G such that a
is not the identity and a2 = e.
3.5.33. Let G be a group and suppose that (ab)2 = a2b2 for all a and b in G. Prove that
G is an abelian group.
3.5.34. Find all the subgroups of Z3×Z3. Use this information to show that Z3×Z3 is not
the same group as Z9. (See Example 3.3.5 for a short description of the product of groups.)
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3.5.35. Find all the subgroups of the symmetry group of an equilateral triangle.
Hint. H1 = {id}, H2 = {id, ρ1, ρ2}, H3 = {id, µ1}, H4 = {id, µ2}, H5 = {id, µ3}, S3.
3.5.36. Compute the subgroups of the symmetry group of a square.
3.5.37. Let H = {2k : k ∈ Z}. Show that H is a subgroup of Q∗.
3.5.38. Let n = 0, 1, 2, . . . and nZ = {nk : k ∈ Z}. Prove that nZ is a subgroup of Z. Show
that these subgroups are the only subgroups of Z.
3.5.39. Let T = {z ∈ C∗ : |z| = 1}. Prove that T is a subgroup of C∗.
3.5.40. (

cos θ − sin θ

sin θ cos θ

)
where θ ∈ R. Prove that G is a subgroup of SL2(R).
3.5.41. Prove that

G = {a+ b
√
2 : a, b ∈ Q and a and b are not both zero}

is a subgroup of R∗ under the group operation of multiplication.
Hint. The identity of G is 1 = 1+0

√
2. Since (a+b

√
2 )(c+d

√
2 ) = (ac+2bd)+(ad+bc)

√
2,

G is closed under multiplication. Finally, (a+ b
√
2 )−1 = a/(a2 − 2b2)− b

√
2/(a2 − 2b2).

3.5.42. Let G be the group of 2× 2 matrices under addition and

H =

{(
a b

c d

)
: a+ d = 0

}
.

Prove that H is a subgroup of G.
3.5.43. Prove or disprove: SL2(Z), the set of 2 × 2 matrices with integer entries and
determinant one, is a subgroup of SL2(R).
3.5.44. List the subgroups of the quaternion group, Q8.
3.5.45. Prove that the intersection of two subgroups of a group G is also a subgroup of G.
3.5.46. Prove or disprove: If H and K are subgroups of a group G, then H ∪ K is a
subgroup of G.
Hint. Look at S3.
3.5.47. Prove or disprove: If H and K are subgroups of a group G, then HK = {hk : h ∈
H and k ∈ K} is a subgroup of G. What if G is abelian?
3.5.48. Let G be a group and g ∈ G. Show that

Z(G) = {x ∈ G : gx = xg for all g ∈ G}

is a subgroup of G. This subgroup is called the center of G.
3.5.49. Let a and b be elements of a group G. If a4b = ba and a3 = e, prove that ab = ba.
Hint. Since a4b = ba, it must be the case that b = a6b = a2ba, and we can conclude that
ab = a3ba = ba.
3.5.50. Give an example of an infinite group in which every nontrivial subgroup is infinite.
3.5.51. If xy = x−1y−1 for all x and y in G, prove that G must be abelian.
3.5.52. Prove or disprove: Every proper subgroup of an nonabelian group is nonabelian.
3.5.53. Let H be a subgroup of G and

C(H) = {g ∈ G : gh = hg for all h ∈ H}.
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