

PreTeXt Sample Book
Abstract Algebra (SAMPLE ONLY)

PreTeXt Sample Book
Abstract Algebra (SAMPLE ONLY)

Thomas W. Judson
Stephen F. Austin State University

Isaac Newton, Editor
Trinity College

Sage Exercises for Abstract Algebra
Robert A. Beezer

University of Puget Sound

December 23, 2024

Thomas W. Judson did his undergraduate work in Illinois, his graduate work
in Oregon and presently teaches in Texas.

He likes to ride his bicycle in France, especially in the high Alps and Pyre-
nees on the roads of the Tour de France.

About Robert A. Beezer Rob Beezer designed, wrote, and tested the Sage
exercises as a contribution to this open source project.

He also likes to ride his bicycle, and once rode with Tom Judson in the high
Alps, in addition to some hiking there, up above the passes the cyclists ride.

Cover Design: Covers 4 U
Production Editor: Vilma Mesa

Edition: Annual Edition 2015

Website: abstract.pugetsound.edu

Website: Some text to test bug report1

©1997–2015 Thomas W. Judson, Robert A. Beezer

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the appendix entitled “GNU Free Documentation License.” All
trademarks™ are the registered® marks of their respective owners. An external
link2 is included3 to test its footnote.

This work has received assistance from numerous volunteer contributors.

1abstract.pugetsound.edu
2example.com
3A second footnote, as well.

http://abstract.pugetsound.edu
http://abstract.pugetsound.edu
https://example.com
https://example.com

To students of algebra everywhere
they are the reason

And to those who teach them

Acknowledgements

I would like to acknowledge the following reviewers for their helpful comments
and suggestions.

• David Anderson, University of Tennessee, Knoxville

• Robert Beezer, University of Puget Sound

• Myron Hood, California Polytechnic State University

• Herbert Kasube, Bradley University

• John Kurtzke, University of Portland

• Inessa Levi, University of Louisville

• Geoffrey Mason, University of California, Santa Cruz

• Bruce Mericle, Mankato State University

• Kimmo Rosenthal, Union College

• Mark Teply, University of Wisconsin

I would also like to thank Steve Quigley, Marnie Pommett, Cathie Griffin,
Kelle Karshick, and the rest of the staff at PWS Publishing for their guidance
throughout this project. It has been a pleasure to work with them.

Robert Beezer encouraged me to make Abstract Algebra: Theory and Appli-
cations available as an open source textbook, a decision that I have never regret-
ted. With his assistance, the book has been rewritten in PreTeXt (pretextbook.
org), making it possible to quickly output print, web, PDF versions and more
from the same source. The open source version of this book has received sup-
port from the National Science Foundation (Award #DUE-1020957).

v

https://pretextbook.org
https://pretextbook.org

Preface

This text is intended for a one or two-semester undergraduate course in abstract
algebra. Traditionally, these courses have covered the theoretical aspects of
groups, rings, and fields. However, with the development of computing in the
last several decades, applications that involve abstract algebra and discrete
mathematics have become increasingly important, and many science, engineer-
ing, and computer science students are now electing to minor in mathematics.
Though theory still occupies a central role in the subject of abstract algebra
and no student should go through such a course without a good notion of what
a proof is, the importance of applications such as coding theory and cryptog-
raphy has grown significantly.

Until recently most abstract algebra texts included few if any applications.
However, one of the major problems in teaching an abstract algebra course
is that for many students it is their first encounter with an environment that
requires them to do rigorous proofs. Such students often find it hard to see
the use of learning to prove theorems and propositions; applied examples help
the instructor provide motivation.

This text contains more material than can possibly be covered in a single
semester. Certainly there is adequate material for a two-semester course, and
perhaps more; however, for a one-semester course it would be quite easy to
omit selected chapters and still have a useful text. The order of presentation
of topics is standard: groups, then rings, and finally fields. Emphasis can be
placed either on theory or on applications. A typical one-semester course might
cover groups and rings while briefly touching on field theory, using Chapters 1
through 6, 9, 10, 11, 13 (the first part), 16, 17, 18 (the first part), 20, and 21.
Parts of these chapters could be deleted and applications substituted according
to the interests of the students and the instructor. A two-semester course
emphasizing theory might cover Chapters 1 through 6, 9, 10, 11, 13 through
18, 20, 21, 22 (the first part), and 23. On the other hand, if applications
are to be emphasized, the course might cover Chapters 1 through 14, and 16
through 22. In an applied course, some of the more theoretical results could be
assumed or omitted. A chapter dependency chart appears below. (A broken
line indicates a partial dependency.) See the Table of Contents for more.

This real text has been used as the basis of a sample book for testing
PreTeXt. So it is slowly migrating away from what the real book looks like and
should not be construed as representative. For example, we have reduced the
book to four chapters, broken into two parts, Part I and Part II. Indeed, that
previous sentence was more an excuse to test some cross-references with parts in
the structural case, such as this one to DeMoivre’s Theorem, Theorem II.2.3.7.

vi

vii

Chapter 23

Chapter 22

Chapter 21

Chapter 18 Chapter 20 Chapter 19

Chapter 17 Chapter 15

Chapter 13 Chapter 16 Chapter 12 Chapter 14

Chapter 11

Chapter 10

Chapter 8 Chapter 9 Chapter 7

Chapters 1–6

Though there are no specific prerequisites for a course in abstract algebra,
students who have had other higher-level courses in mathematics will generally
be more prepared than those who have not, because they will possess a bit
more mathematical sophistication. Occasionally, we shall assume some basic
linear algebra; that is, we shall take for granted an elementary knowledge of
matrices and determinants. This should present no great problem, since most
students taking a course in abstract algebra have been introduced to matrices
and determinants elsewhere in their career, if they have not already taken a
sophomore or junior-level course in linear algebra.

Exercise sections are the heart of any mathematics text. An exercise set
appears at the end of each chapter. The nature of the exercises ranges over
several categories; computational, conceptual, and theoretical problems are
included. A section presenting hints and solutions to many of the exercises
appears at the end of the text. Often in the solutions a proof is only sketched,
and it is up to the student to provide the details. The exercises range in
difficulty from very easy to very challenging. Many of the more substantial
problems require careful thought, so the student should not be discouraged if
the solution is not forthcoming after a few minutes of work.

There are additional exercises or computer projects at the ends of many of
the chapters. The computer projects usually require a knowledge of program-
ming. All of these exercises and projects are more substantial in nature and
allow the exploration of new results and theory.

Sage (sagemath.org) is a free, open source, software system for advanced
mathematics, which is ideal for assisting with a study of abstract algebra. Sage
can be used either on your own computer, a local server, or on SageMathCloud

http://sagemath.org

viii

(cloud.sagemath.com). Robert Beezer has written a comprehensive introduction
to Sage and a selection of relevant exercises that appear at the end of each
chapter, including live Sage cells in the web version of the book.

Thomas W. Judson
Nacogdoches, Texas 2015

https://cloud.sagemath.com

Contributors to the 4th Edition

Many individuals have made this book possible. We will try to thank a few of
them here, and hope we have not forgotten anybody really important.

Thomas Judson
Department of Mathematics and
Statistics
Stephen F. Austin State University
judsontw@sfasu.edu

David Farmer
American Institute of Mathematics
farmer@aimath.org

Robert Beezer
Department of Mathematics and
Computer Science
University of Puget Sound
Tacoma, Washington, USA
beezer@pugetsound.edu

Alex Jordan
Department of Mathematics
Portland Community College
Portland, OR
alex.jordan@pcc.edu

Thomas Judson
Department of Mathematics and
Statistics
Stephen F. Austin State University
judsontw@sfasu.edu

David Farmer
American Institute of Mathematics
farmer@aimath.org

Robert Beezer
Department of Mathematics and
Computer Science
University of Puget Sound
Tacoma, Washington, USA
beezer@pugetsound.edu

Alex Jordan
Department of Mathematics
Portland Community College
Portland, OR
alex.jordan@pcc.edu

Thomas Judson
Department of Mathematics and
Statistics
Stephen F. Austin State University
judsontw@sfasu.edu

David Farmer
American Institute of Mathematics
farmer@aimath.org

Robert Beezer
Department of Mathematics and
Computer Science
University of Puget Sound
Tacoma, Washington, USA
beezer@pugetsound.edu

Alex Jordan
Department of Mathematics
Portland Community College
Portland, OR
alex.jordan@pcc.edu

Thomas Judson
Department of Mathematics and
Statistics
Stephen F. Austin State University
judsontw@sfasu.edu

David Farmer
American Institute of Mathematics
farmer@aimath.org

ix

mailto:judsontw@sfasu.edu
mailto:farmer@aimath.org
mailto:beezer@pugetsound.edu
mailto:alex.jordan@pcc.edu
mailto:judsontw@sfasu.edu
mailto:farmer@aimath.org
mailto:beezer@pugetsound.edu
mailto:alex.jordan@pcc.edu
mailto:judsontw@sfasu.edu
mailto:farmer@aimath.org
mailto:beezer@pugetsound.edu
mailto:alex.jordan@pcc.edu
mailto:judsontw@sfasu.edu
mailto:farmer@aimath.org

x

Robert Beezer
Department of Mathematics and
Computer Science
University of Puget Sound
Tacoma, Washington, USA
beezer@pugetsound.edu

Alex Jordan
Department of Mathematics
Portland Community College
Portland, OR
alex.jordan@pcc.edu

Thomas Judson
Department of Mathematics and
Statistics
Stephen F. Austin State University
judsontw@sfasu.edu

David Farmer
American Institute of Mathematics
farmer@aimath.org

Robert Beezer
Department of Mathematics and
Computer Science
University of Puget Sound
Tacoma, Washington, USA
beezer@pugetsound.edu

Alex Jordan
Department of Mathematics
Portland Community College
Portland, OR
alex.jordan@pcc.edu

That’s it. Thanks everybody.

mailto:beezer@pugetsound.edu
mailto:alex.jordan@pcc.edu
mailto:judsontw@sfasu.edu
mailto:farmer@aimath.org
mailto:beezer@pugetsound.edu
mailto:alex.jordan@pcc.edu

Contents

Acknowledgements v

Preface vi

Contributors to the 4th Edition ix

I Basics

1 Preliminaries 2

2 The Integers 25

II Algebra

1 Groups 42

2 Cyclicity 68

3 Runestone Testing 83

Appendices

A Notation 134

B Hints and Answers to Selected Odd Exercises 136

C Hints and Answers to Selected Even Exercises 143

xi

CONTENTS xii

D Hints and Answers to Selected Exercises 149

E A Structured Appendix 160

F GNU Free Documentation License 161

Back Matter

Index 168

Part I

Basics

1

Chapter 1

Preliminaries

A certain amount of mathematical maturity is necessary to find and study
applications of abstract algebra. A basic knowledge of set theory, mathematical
induction, equivalence relations, and matrices is a must. Even more important
is the ability to read and understand mathematical proofs. In this chapter we
will outline the background needed for a course in abstract algebra.

It helps when testing to know when this sample document was generated:
December 23, 2024, 16:35:36 (-08:00).

1.1 A Short Note on Proofs
Abstract mathematics is different from other sciences. In laboratory sciences
such as chemistry and physics, scientists perform experiments to discover new
principles and verify theories. Although mathematics is often motivated by
physical experimentation or by computer simulations, it is made rigorous
through the use of logical arguments. In studying abstract mathematics, we
take what is called an axiomatic approach; that is, we take a collection of ob-
jects S and assume some rules about their structure. These rules are called
axioms. Using the axioms for S, we wish to derive other information about
S by using logical arguments. We require that our axioms be consistent; that
is, they should not contradict one another. We also demand that there not be
too many axioms. If a system of axioms is too restrictive, there will be few
examples of the mathematical structure.

A statement in logic or mathematics is an assertion that is either true or
false. Consider the following examples:

• 3 + 56− 13 + 8/2.

• All cats are black.

• 2 + 3 = 5.

• 2x = 6 exactly when x = 4.

• If ax2 + bx+ c = 0 and a 6= 0, then

x =
−b±

√
b2 − 4ac

2a
.

• x3 − 4x2 + 5x− 6.

2

CHAPTER 1. PRELIMINARIES 3

All but the first and last examples are statements, and must be either true or
false.

A mathematical proof is nothing more than a convincing argument about
the accuracy of a statement. Such an argument should contain enough detail
to convince the audience; for instance, we can see that the statement “2x = 6
exactly when x = 4” is false by evaluating 2 · 4 and noting that 6 6= 8, an
argument that would satisfy anyone. Of course, audiences may vary widely:
proofs can be addressed to another student, to a professor, or to the reader of a
text. If more detail than needed is presented in the proof, then the explanation
will be either long-winded or poorly written. If too much detail is omitted, then
the proof may not be convincing. Again it is important to keep the audience
in mind. High school students require much more detail than do graduate
students. A good rule of thumb for an argument in an introductory abstract
algebra course is that it should be written to convince one’s peers, whether
those peers be other students or other readers of the text.

Let us examine different types of statements. A statement could be as
simple as “10/5 = 2;” however, mathematicians are usually interested in more
complex statements such as “If p, then q,” where p and q are both statements.
If certain statements are known or assumed to be true, we wish to know what
we can say about other statements. Here p is called the hypothesis and q is
known as the conclusion. Consider the following statement: If ax2+bx+c = 0
and a 6= 0, then

x =
−b±

√
b2 − 4ac

2a
.

The hypothesis is ax2 + bx+ c = 0 and a 6= 0; the conclusion is

x =
−b±

√
b2 − 4ac

2a
.

Notice that the statement says nothing about whether or not the hypothesis
is true. However, if this entire statement is true and we can show that ax2 +
bx + c = 0 with a 6= 0 is true, then the conclusion must be true. A proof of
this statement might simply be a series of equations:

ax2 + bx+ c = 0

x2 +
b

a
x = − c

a

x2 +
b

a
x+

(
b

2a

)2

=

(
b

2a

)2

− c

a(
x+

b

2a

)2

=
b2 − 4ac

4a2

x+
b

2a
=

±
√
b2 − 4ac

2a

x =
−b±

√
b2 − 4ac

2a
.

If we can prove a statement true, then that statement is called a propo-
sition. A proposition of major importance is called a theorem. Sometimes
instead of proving a theorem or proposition all at once, we break the proof
down into modules; that is, we prove several supporting propositions, which
are called lemmas, and use the results of these propositions to prove the main
result. If we can prove a proposition or a theorem, we will often, with very
little effort, be able to derive other related propositions called corollaries.

CHAPTER 1. PRELIMINARIES 4

1.1.1 Some Cautions and Suggestions
There are several different strategies for proving propositions. In addition to
using different methods of proof, students often make some common mistakes
when they are first learning how to prove theorems. To aid students who
are studying abstract mathematics for the first time, we list here some of
the difficulties that they may encounter and some of the strategies of proof
available to them. It is a good idea to keep referring back to this list as a
reminder. (Other techniques of proof will become apparent throughout this
chapter and the remainder of the text.)

• A theorem cannot be proved by example; however, the standard way to
show that a statement is not a theorem is to provide a counterexample.

• Quantifiers are important. Words and phrases such as only, for all, for
every, and for some possess different meanings.

• Never assume any hypothesis that is not explicitly stated in the theorem.
You cannot take things for granted.

• Suppose you wish to show that an object exists and is unique. First show
that there actually is such an object. To show that it is unique, assume
that there are two such objects, say r and s, and then show that r = s.

• Sometimes it is easier to prove the contrapositive of a statement. Proving
the statement “If p, then q” is exactly the same as proving the statement
“If not q, then not p.”

• Although it is usually better to find a direct proof of a theorem, this task
can sometimes be difficult. It may be easier to assume that the theorem
that you are trying to prove is false, and to hope that in the course of your
argument you are forced to make some statement that cannot possibly
be true.

Remember that one of the main objectives of higher mathematics is proving
theorems. Theorems are tools that make new and productive applications of
mathematics possible. We use examples to give insight into existing theorems
and to foster intuitions as to what new theorems might be true. Applications,
examples, and proofs are tightly interconnected—much more so than they may
seem at first appearance.

1.2 Sets and Equivalence Relations

1.2.1 Set Theory
A set is a well-defined collection of objects; that is, it is defined in such a man-
ner that we can determine for any given object x whether or not x belongs to
the set. The objects that belong to a set are called its elements or members.
We will denote sets by capital letters, such as A or X; if a is an element of the
set A, we write a ∈ A.

A set is usually specified either by listing all of its elements inside a pair of
braces or by stating the property that determines whether or not an object x
belongs to the set. We might write

X = {x1, x2, . . . , xn}

CHAPTER 1. PRELIMINARIES 5

for a set containing elements x1, x2, . . . , xn or

X = {x : x satisfies P}

if each x in X satisfies a certain property P. For example, if E is the set of
even positive integers, we can describe E by writing either

E = {2, 4, 6, . . .} or E = {x : x is an even integer and x > 0}.

We write 2 ∈ E when we want to say that 2 is in the set E, and −3 /∈ E to say
that −3 is not in the set E.

Some of the more important sets that we will consider are the following:

N = {n : n is a natural number} = {1, 2, 3, . . .}
Z = {n : n is an integer} = {. . . ,−1, 0, 1, 2, . . .}
Q = {r : r is a rational number} = {p/q : p, q ∈ Z where q 6= 0}
R = {x : x is a real number}
C = {z : z is a complex number}.

We can find various relations between sets as well as perform operations on
sets. A set A is a subset of B, written A ⊂ B or B ⊃ A, if every element of
A is also an element of B. For example,

{4, 5, 8} ⊂ {2, 3, 4, 5, 6, 7, 8, 9}

and
N ⊂ Z ⊂ Q ⊂ R ⊂ C.

Trivially, every set is a subset of itself. A set B is a proper subset of a set A
if B ⊂ A but B 6= A. If A is not a subset of B, we write A 6⊂ B; for example,
{4, 7, 9} 6⊂ {2, 4, 5, 8, 9}. Two sets are equal, written A = B, if we can show
that A ⊂ B and B ⊂ A.

It is convenient to have a set with no elements in it. This set is called the
empty set and is denoted by ∅. Note that the empty set is a subset of every
set.

To construct new sets out of old sets, we can perform certain operations:
the union A ∪B of two sets A and B is defined as

A ∪B = {x : x ∈ A or x ∈ B}

and the intersection of A and B is defined by

A ∩B = {x : x ∈ A and x ∈ B}.

If A = {1, 3, 5} and B = {1, 2, 3, 9}, then

A ∪B = {1, 2, 3, 5, 9} and A ∩B = {1, 3}.

We can consider the union and the intersection of more than two sets. In this
case we write

n⋃
i=1

Ai = A1 ∪ . . . ∪An

and
n⋂

i=1

Ai = A1 ∩ . . . ∩An

CHAPTER 1. PRELIMINARIES 6

for the union and intersection, respectively, of the sets A1, . . . , An.
When two sets have no elements in common, they are said to be disjoint;

for example, if E is the set of even integers and O is the set of odd integers, then
E and O are disjoint. Two sets A and B are disjoint exactly when A ∩B = ∅.

Sometimes we will work within one fixed set U , called the universal set.
For any set A ⊂ U , we define the complement of A, denoted by A′, to be the
set

A′ = {x : x ∈ U and x /∈ A}.
We define the difference of two sets A and B to be

A \B = A ∩B′ = {x : x ∈ A and x /∈ B}.
Example 1.2.1 Set Operations. Let R be the universal set and suppose
that

A = {x ∈ R : 0 < x ≤ 3} and B = {x ∈ R : 2 ≤ x < 4}.

Then

A ∩B = {x ∈ R : 2 ≤ x ≤ 3}
A ∪B = {x ∈ R : 0 < x < 4}
A \B = {x ∈ R : 0 < x < 2}

A′ = {x ∈ R : x ≤ 0 or x > 3}.

□
Proposition 1.2.2 Let A, B, and C be sets. Then

1. A ∪A = A, A ∩A = A, and A \A = ∅;

2. A ∪ ∅ = A and A ∩ ∅ = ∅;

3. A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C;

4. A ∪B = B ∪A and A ∩B = B ∩A;

5. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C);

6. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Proof. We will prove (1) and (3) and leave the remaining results to be proven
in the exercises.
(1) Observe that

A ∪A = {x : x ∈ A or x ∈ A}
= {x : x ∈ A}
= A

and

A ∩A = {x : x ∈ A and x ∈ A}
= {x : x ∈ A}
= A.

Also, A \A = A ∩A′ = ∅.
(3) For sets A, B, and C,

A ∪ (B ∪ C) = A ∪ {x : x ∈ B or x ∈ C}
= {x : x ∈ A or x ∈ B, or x ∈ C}

CHAPTER 1. PRELIMINARIES 7

= {x : x ∈ A or x ∈ B} ∪ C

= (A ∪B) ∪ C.

A similar argument proves that A ∩ (B ∩ C) = (A ∩B) ∩ C. ■
Theorem 1.2.3 De Morgan’s Laws. (Augustus De Morgan, 1806–
1871) Let A and B be sets. Then

1. (A ∪B)′ = A′ ∩B′;

2. (A ∩B)′ = A′ ∪B′.

Proof. (1) We must show that (A∪B)′ ⊂ A′ ∩B′ and (A∪B)′ ⊃ A′ ∩B′. Let
x ∈ (A∪B)′. Then x /∈ A∪B. So x is neither in A nor in B, by the definition
of the union of sets. By the definition of the complement, x ∈ A′ and x ∈ B′.
Therefore, x ∈ A′ ∩B′ and we have (A ∪B)′ ⊂ A′ ∩B′.
To show the reverse inclusion, suppose that x ∈ A′ ∩ B′. Then x ∈ A′ and
x ∈ B′, and so x /∈ A and x /∈ B. Thus x /∈ A∪B and so x ∈ (A∪B)′. Hence,
(A ∪B)′ ⊃ A′ ∩B′ and so (A ∪B)′ = A′ ∩B′.
The proof of (2) is left as an exercise. ■
Example 1.2.4 Other Relations on Sets. Other relations between sets
often hold true. For example,

(A \B) ∩ (B \A) = ∅.

To see that this is true, observe that

(A \B) ∩ (B \A) = (A ∩B′) ∩ (B ∩A′)

= A ∩A′ ∩B ∩B′

= ∅.

□

1.2.2 Cartesian Products and Mappings
Given sets A and B, we can define a new set A × B, called the Cartesian
product of A and B, as a set of ordered pairs. That is,

A×B = {(a, b) : a ∈ A and b ∈ B}.

Example 1.2.5 Cartesian Products. If A = {x, y}, B = {1, 2, 3}, and
C = ∅, then A×B is the set

{(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}

and
A× C = ∅.

□
We define the Cartesian product of n sets to be

A1 × · · · × An = {(a1, . . . , an) : ai ∈ Ai for i = 1, . . . , n}.

If A = A1 = A2 = · · · = An, we often write An for A×· · ·×A (where A would
be written n times). For example, the set R3 consists of all of 3-tuples of real
numbers.

Subsets of A × B are called relations. We will define a mapping or
function f ⊂ A×B from a set A to a set B to be the special type of relation

CHAPTER 1. PRELIMINARIES 8

where (a, b) ∈ f if for every element a ∈ A there exists a unique element b ∈ B.
Another way of saying this is that for every element in A, f assigns a unique
element in B. We usually write f : A → B or A f→ B. Instead of writing down
ordered pairs (a, b) ∈ A × B, we write f(a) = b or f : a 7→ b. The set A is
called the domain of f and

f(A) = {f(a) : a ∈ A} ⊂ B

is called the range or image of f . We can think of the elements in the
function’s domain as input values and the elements in the function’s range as
output values.

1

2

3

a

b

c

1

2

3

a

b

c

A B

A Bg

f

Figure 1.2.6 Mappings and relations
Example 1.2.7 Mappings. Suppose A = {1, 2, 3} and B = {a, b, c}. In
Figure 1.2.6 we define relations f and g from A to B. The relation f is a
mapping, but g is not because 1 ∈ A is not assigned to a unique element in B;
that is, g(1) = a and g(1) = b. □

CHAPTER 1. PRELIMINARIES 9

Given a function f : A → B, it is often possible to write a list describing
what the function does to each specific element in the domain. However, not all
functions can be described in this manner. For example, the function f : R → R
that sends each real number to its cube is a mapping that must be described
by writing f(x) = x3 or f : x 7→ x3.

Consider the relation f : Q → Z given by f(p/q) = p. We know that
1/2 = 2/4, but is f(1/2) = 1 or 2? This relation cannot be a mapping because
it is not well-defined. A relation is well-defined if each element in the domain
is assigned to a unique element in the range.

If f : A → B is a map and the image of f is B, i.e., f(A) = B, then f is
said to be onto or surjective. In other words, if there exists an a ∈ A for each
b ∈ B such that f(a) = b, then f is onto. A map is one-to-one or injective
if a1 6= a2 implies f(a1) 6= f(a2). Equivalently, a function is one-to-one if
f(a1) = f(a2) implies a1 = a2. A map that is both one-to-one and onto is
called bijective.
Example 1.2.8 One-to-One and Onto Mappings. Let f : Z → Q be
defined by f(n) = n/1. Then f is one-to-one but not onto. Define g : Q → Z
by g(p/q) = p where p/q is a rational number expressed in its lowest terms
with a positive denominator. The function g is onto but not one-to-one. □

Given two functions, we can construct a new function by using the range
of the first function as the domain of the second function. Let f : A → B and
g : B → C be mappings. Define a new map, the composition of f and g from
A to C, by (g ◦ f)(x) = g(f(x)).

A B C

1

2

3

a

b

c

X

Y

Z

f g

A C

1

2

3

X

Y

Z

g ◦ f

Figure 1.2.9 Composition of maps
Example 1.2.10 Composition of Mappings. Consider the functions f :
A → B and g : B → C that are defined in Figure 1.2.9 (top). The composition

CHAPTER 1. PRELIMINARIES 10

of these functions, g ◦ f : A → C, is defined in Figure 1.2.9 (bottom). □

Example 1.2.11 Composition is not Commutative. Let f(x) = x2 and
g(x) = 2x+ 5. Then

(f ◦ g)(x) = f(g(x)) = (2x+ 5)2 = 4x2 + 20x+ 25

and
(g ◦ f)(x) = g(f(x)) = 2x2 + 5.

In general, order makes a difference; that is, in most cases f ◦ g 6= g ◦ f . □
Example 1.2.12 Some Mappings Commute. Sometimes it is the case
that f ◦ g = g ◦ f . Let f(x) = x3 and g(x) = 3

√
x. Then

(f ◦ g)(x) = f(g(x)) = f(3
√
x) = (3

√
x)3 = x

and
(g ◦ f)(x) = g(f(x)) = g(x3) =

3
√
x3 = x.

□
Example 1.2.13 A Linear Map. Given a 2× 2 matrix

A =

(
a b

c d

)
,

we can define a map TA : R2 → R2 by

TA(x, y) = (ax+ by, cx+ dy)

for (x, y) in R2. This is actually matrix multiplication; that is,(
a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)
.

Maps from Rn to Rm given by matrices are called linear maps or linear
transformations. □
Example 1.2.14 A Permutation. Suppose that S = {1, 2, 3}. Define a
map π : S → S by

π(1) = 2, π(2) = 1, π(3) = 3.

This is a bijective map. An alternative way to write π is(
1 2 3

π(1) π(2) π(3)

)
=

(
1 2 3

2 1 3

)
.

For any set S, a one-to-one and onto mapping π : S → S is called a permuta-
tion of S. □
Theorem 1.2.15 Let f : A → B, g : B → C, and h : C → D. Then

1. The composition of mappings is associative; that is, (h◦g)◦f = h◦(g◦f);

2. If f and g are both one-to-one, then the mapping g ◦ f is one-to-one;

3. If f and g are both onto, then the mapping g ◦ f is onto;

4. If f and g are bijective, then so is g ◦ f .

CHAPTER 1. PRELIMINARIES 11

Proof. We will prove (1) and (3). Part (2) is left as an exercise. Part (4)
follows directly from (2) and (3).
(1) We must show that

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

For a ∈ A we have

(h ◦ (g ◦ f))(a) = h((g ◦ f)(a))
= h(g(f(a)))

= (h ◦ g)(f(a))
= ((h ◦ g) ◦ f)(a).

(3) Assume that f and g are both onto functions. Given c ∈ C, we must show
that there exists an a ∈ A such that (g ◦ f)(a) = g(f(a)) = c. However, since
g is onto, there is an element b ∈ B such that g(b) = c. Similarly, there is an
a ∈ A such that f(a) = b. Accordingly,

(g ◦ f)(a) = g(f(a)) = g(b) = c.

■
If S is any set, we will use idS or id to denote the identity mapping from

S to itself. Define this map by id(s) = s for all s ∈ S. A map g : B → A is an
inverse mapping of f : A → B if g ◦ f = idA and f ◦ g = idB ; in other words,
the inverse function of a function simply “undoes” the function. A map is said
to be invertible if it has an inverse. We usually write f−1 for the inverse of
f .

Example 1.2.16 An Inverse Function. The function f(x) = x3 has inverse
f−1(x) = 3

√
x by Example 1.2.12. □

Example 1.2.17 Exponential and Logarithmic Functions are Inverses.
The natural logarithm and the exponential functions, f(x) = lnx and f−1(x) =
ex, are inverses of each other provided that we are careful about choosing
domains. Observe that

f(f−1(x)) = f(ex) = ln ex = x

and
f−1(f(x)) = f−1(lnx) = eln x = x

whenever composition makes sense. □
Example 1.2.18 A Matrix Inverse Yields an Inverse of a Linear Map.
Suppose that

A =

(
3 1

5 2

)
.

Then A defines a map from R2 to R2 by

TA(x, y) = (3x+ y, 5x+ 2y).

We can find an inverse map of TA by simply inverting the matrix A; that is,
T−1
A = TA−1 . In this example,

A−1 =

(
2 −1

−5 3

)

CHAPTER 1. PRELIMINARIES 12

and hence, the inverse map is given by

T−1
A (x, y) = (2x− y,−5x+ 3y).

It is easy to check that

T−1
A ◦ TA(x, y) = TA ◦ T−1

A (x, y) = (x, y).

Not every map has an inverse. If we consider the map

TB(x, y) = (3x, 0)

given by the matrix

B =

(
3 0

0 0

)
,

then an inverse map would have to be of the form

T−1
B (x, y) = (ax+ by, cx+ dy)

and
(x, y) = T ◦ T−1

B (x, y) = (3ax+ 3by, 0)

for all x and y. Clearly this is impossible because y might not be 0. □
Example 1.2.19 An Inverse Permutation. Given the permutation

π =

(
1 2 3

2 3 1

)
on S = {1, 2, 3}, it is easy to see that the permutation defined by

π−1 =

(
1 2 3

3 1 2

)
is the inverse of π. In fact, any bijective mapping possesses an inverse, as we
will see in the next theorem. □
Theorem 1.2.20 A mapping is invertible if and only if it is both one-to-one
and onto.
Proof. Suppose first that f : A → B is invertible with inverse g : B → A.
Then g ◦ f = idA is the identity map; that is, g(f(a)) = a. If a1, a2 ∈ A
with f(a1) = f(a2), then a1 = g(f(a1)) = g(f(a2)) = a2. Consequently, f is
one-to-one. Now suppose that b ∈ B. To show that f is onto, it is necessary to
find an a ∈ A such that f(a) = b, but f(g(b)) = b with g(b) ∈ A. Let a = g(b).
Conversely, let f be bijective and let b ∈ B. Since f is onto, there exists an
a ∈ A such that f(a) = b. Because f is one-to-one, a must be unique. Define
g by letting g(b) = a. We have now constructed the inverse of f . ■

1.2.3 Equivalence Relations and Partitions
A fundamental notion in mathematics is that of equality. We can generalize
equality with equivalence relations and equivalence classes. An equivalence
relation on a set X is a relation R ⊂ X ×X such that

• (x, x) ∈ R for all x ∈ X (reflexive property);

• (x, y) ∈ R implies (y, x) ∈ R (symmetric property);

CHAPTER 1. PRELIMINARIES 13

• (x, y) and (y, z) ∈ R imply (x, z) ∈ R (transitive property).
Given an equivalence relation R on a set X, we usually write x ∼ y instead

of (x, y) ∈ R. If the equivalence relation already has an associated notation
such as =, ≡, or ∼=, we will use that notation.
Example 1.2.21 Equivalent Fractions. Let p, q, r, and s be integers,
where q and s are nonzero. Define p/q ∼ r/s if ps = qr. Clearly ∼ is reflexive
and symmetric. To show that it is also transitive, suppose that p/q ∼ r/s and
r/s ∼ t/u, with q, s, and u all nonzero. Then ps = qr and ru = st. Therefore,

psu = qru = qst.

Since s 6= 0, pu = qt. Consequently, p/q ∼ t/u. □
Example 1.2.22 An Equivalence Relation From Derivatives. Suppose
that f and g are differentiable functions on R. We can define an equivalence
relation on such functions by letting f(x) ∼ g(x) if f ′(x) = g′(x). It is clear
that ∼ is both reflexive and symmetric. To demonstrate transitivity, suppose
that f(x) ∼ g(x) and g(x) ∼ h(x). From calculus we know that f(x)−g(x) = c1
and g(x)− h(x) = c2, where c1 and c2 are both constants. Hence,

f(x)− h(x) = (f(x)− g(x)) + (g(x)− h(x)) = c1 − c2

and f ′(x)− h′(x) = 0. Therefore, f(x) ∼ h(x). □

Example 1.2.23 Equivalent Circles. For (x1, y1) and (x2, y2) in R2, define
(x1, y1) ∼ (x2, y2) if x2

1 + y21 = x2
2 + y22 . Then ∼ is an equivalence relation on

R2. □
Example 1.2.24 Equivalent Matrices. Let A and B be 2 × 2 matrices
with entries in the real numbers. We can define an equivalence relation on the
set of 2 × 2 matrices, by saying A ∼ B if there exists an invertible matrix P
such that PAP−1 = B. For example, if

A =

(
1 2

−1 1

)
and B =

(
−18 33

−11 20

)
,

then A ∼ B since PAP−1 = B for

P =

(
2 5

1 3

)
.

Let I be the 2× 2 identity matrix; that is,

I =

(
1 0

0 1

)
.

Then IAI−1 = IAI = A; therefore, the relation is reflexive. To show symmetry,
suppose that A ∼ B. Then there exists an invertible matrix P such that
PAP−1 = B. So

A = P−1BP = P−1B(P−1)−1.
Finally, suppose that A ∼ B and B ∼ C. Then there exist invertible matrices
P and Q such that PAP−1 = B and QBQ−1 = C. Since

C = QBQ−1 = QPAP−1Q−1 = (QP)A(QP)−1,

the relation is transitive. Two matrices that are equivalent in this manner are
said to be similar. □

CHAPTER 1. PRELIMINARIES 14

A partition P of a set X is a collection of nonempty sets X1, X2, . . . such
that Xi ∩Xj = ∅ for i 6= j and

⋃
k Xk = X. Let ∼ be an equivalence relation

on a set X and let x ∈ X. Then [x] = {y ∈ X : y ∼ x} is called the
equivalence class of x. We will see that an equivalence relation gives rise to
a partition via equivalence classes. Also, whenever a partition of a set exists,
there is some natural underlying equivalence relation, as the following theorem
demonstrates.
Theorem 1.2.25 Given an equivalence relation ∼ on a set X, the equivalence
classes of X form a partition of X. Conversely, if P = {Xi} is a partition of a
set X, then there is an equivalence relation on X with equivalence classes Xi.

Proof. Suppose there exists an equivalence relation ∼ on the set X. For any
x ∈ X, the reflexive property shows that x ∈ [x] and so [x] is nonempty. Clearly
X =

⋃
x∈X [x]. Now let x, y ∈ X. We need to show that either [x] = [y] or

[x]∩ [y] = ∅. Suppose that the intersection of [x] and [y] is not empty and that
z ∈ [x] ∩ [y]. Then z ∼ x and z ∼ y. By symmetry and transitivity x ∼ y;
hence, [x] ⊂ [y]. Similarly, [y] ⊂ [x] and so [x] = [y]. Therefore, any two
equivalence classes are either disjoint or exactly the same.
Conversely, suppose that P = {Xi} is a partition of a set X. Let two elements
be equivalent if they are in the same partition. Clearly, the relation is reflexive.
If x is in the same partition as y, then y is in the same partition as x, so x ∼ y
implies y ∼ x. Finally, if x is in the same partition as y and y is in the same
partition as z, then x must be in the same partition as z, and transitivity holds.

■
Corollary 1.2.26 Two equivalence classes of an equivalence relation are either
disjoint or equal.

Let us examine some of the partitions given by the equivalence classes in
the last set of examples.
Example 1.2.27 A Partition of Fractions. In the equivalence relation
in Example 1.2.21, two pairs of integers, (p, q) and (r, s), are in the same
equivalence class when they reduce to the same fraction in its lowest terms. □
Example 1.2.28 A Partition of Functions. In the equivalence relation in
Example 1.2.22, two functions f(x) and g(x) are in the same partition when
they differ by a constant. □
Example 1.2.29 A Partition of Circles. We defined an equivalence class
on R2 by (x1, y1) ∼ (x2, y2) if x2

1+y21 = x2
2+y22 . Two pairs of real numbers are

in the same partition when they lie on the same circle about the origin. □
Example 1.2.30 A Partition of Integers. Let r and s be two integers
and suppose that n ∈ N. We say that r is congruent to s modulo n, or r
is congruent to s mod n, if r − s is evenly divisible by n; that is, r − s = nk
for some k ∈ Z. In this case we write r ≡ s (mod n). For example, 41 ≡ 17
(mod 8) since 41− 17 = 24 is divisible by 8. We claim that congruence modulo
n forms an equivalence relation of Z. Certainly any integer r is equivalent to
itself since r − r = 0 is divisible by n. We will now show that the relation is
symmetric. If r ≡ s (mod n), then r − s = −(s− r) is divisible by n. So s− r
is divisible by n and s ≡ r (mod n). Now suppose that r ≡ s (mod n) and
s ≡ t (mod n). Then there exist integers k and l such that r − s = kn and
s− t = ln. To show transitivity, it is necessary to prove that r − t is divisible
by n. However,

r − t = r − s+ s− t = kn+ ln = (k + l)n,

and so r − t is divisible by n.

CHAPTER 1. PRELIMINARIES 15

If we consider the equivalence relation established by the integers modulo
3, then

[0] = {. . . ,−3, 0, 3, 6, . . .}
[1] = {. . . ,−2, 1, 4, 7, . . .}
[2] = {. . . ,−1, 2, 5, 8, . . .}.

Notice that [0] ∪ [1] ∪ [2] = Z and also that the sets are disjoint. The sets
[0], [1], and [2] form a partition of the integers.

The integers modulo n are a very important example in the study of abstract
algebra and will become quite useful in our investigation of various algebraic
structures such as groups and rings. In our discussion of the integers modulo
n we have actually assumed a result known as the division algorithm, which
will be stated and proved in Chapter 2. □

1.3 Sage
Sage is a powerful system for studying and exploring many different areas of
mathematics. In this textbook, you will study a variety of algebraic structures,
such as groups, rings and fields. Sage does an excellent job of implementing
many features of these objects as we will see in the chapters ahead. But here
and now, in this initial chapter, we will concentrate on a few general ways of
getting the most out of working with Sage.

You may use Sage several different ways. It may be used as a command-
line program when installed on your own computer. Or it might be a web
application such as the SageMathCloud. Our writing will assume that you
are reading this as a worksheet within the Sage Notebook (a web browser
interface), or this is a section of the entire book presented as web pages, and
you are employing the Sage Cell Server via those pages. After the first few
chapters the explanations should work equally well for whatever vehicle you
use to execute Sage commands.

1.3.1 Executing Sage Commands
Most of your interaction will be by typing commands into a compute cell. If
you are reading this in the Sage Notebook or as a webpage version of the
book, then you will see a compute cell just below this paragraph. Click once
inside the compute cell and if you are in the Sage Notebook, you will get a
more distinctive border around it, a blinking cursor inside, plus a cute little
“evaluate” link below.At the cursor, type 2+2 and then click on the evaluate link.
Did a 4 appear below the cell? If so, you have successfully sent a command off
for Sage to evaluate and you have received back the (correct) answer.

Here is another compute cell. Try evaluating the command factorial(300)
here.Hmmmmm. That is quite a big integer! If you see slashes at the end of
each line, this means the result is continued onto the next line, since there are
615 total digits in the result.

To make new compute cells in the Sage Notebook (only), hover your mouse
just above another compute cell, or just below some output from a compute
cell. When you see a skinny blue bar across the width of your worksheet, click
and you will open up a new compute cell, ready for input. Note that your
worksheet will remember any calculations you make, in the order you make
them, no matter where you put the cells, so it is best to stay organized and
add new cells at the bottom.

CHAPTER 1. PRELIMINARIES 16

Try placing your cursor just below the monstrous value of 300! that you
have. Click on the blue bar and try another factorial computation in the new
compute cell.

Each compute cell will show output due to only the very last command in
the cell. Try to predict the following output before evaluating the cell.

a = 10
b = 6
b = b - 10
a = a + 20
a

30

The following compute cell will not print anything since the one command
does not create output. But it will have an effect, as you can see when you
execute the subsequent cell. Notice how this uses the value of b from above.
Execute this compute cell once. Exactly once. Even if it appears to do nothing.
If you execute the cell twice, your credit card may be charged twice.

b = b + 50

Now execute this cell, which will produce some output.

b + 20

66

So b came into existence as 6. We subtracted 10 immediately afterward.
Then a subsequent cell added 50. This assumes you executed this cell exactly
once! In the last cell we create b+20 (but do not save it) and it is this value
(66) that is output, while b is still 46.

You can combine several commands on one line with a semi-colon. This
is a great way to get multiple outputs from a compute cell. The syntax for
building a matrix should be somewhat obvious when you see the output, but
if not, it is not particularly important to understand now.

A = matrix ([[3, 1], [5 ,2]]); A

[3 1]
[5 2]

print A; print ; A.inverse ()

[3 1]
[5 2]
<BLANKLINE >
[2 -1]
[-5 3]

1.3.2 Immediate Help
Some commands in Sage are “functions,” an example is factorial() above.
Other commands are “methods” of an object and are like characteristics of
objects, an example is .inverse() as a method of a matrix. Once you know

CHAPTER 1. PRELIMINARIES 17

how to create an object (such as a matrix), then it is easy to see all the available
methods. Write the name of the object, place a period (“dot”) and hit the TAB
key. If you have A defined from above, then the compute cell below is ready to
go, click into it and then hit TAB (not “evaluate”!). You should get a long list
of possible methods.

A.

To get some help on how to use a method with an object, write its name
after a dot (with no parentheses) and then use a question-mark and hit TAB.
(Hit the escape key “ESC” to remove the list, or click on the text for a method.)

A.inverse?

With one more question-mark and a TAB you can see the actual computer
instructions that were programmed into Sage to make the method work, once
you scoll down past the documentation delimited by the triple quotes ("""):

A.inverse ??

It is worthwhile to see what Sage does when there is an error. You will
probably see a lot of these at first, and initially they will be a bit intimidating.
But with time, you will learn how to use them effectively and you will also
become more proficient with Sage and see them less often. Execute the compute
cell below, it asks for the inverse of a matrix that has no inverse. Then reread
the commentary.

B = matrix ([[2, 20], [5, 50]])
B.inverse ()

Traceback (most recent call last):
...
ZeroDivisionError: Matrix is singular

Click just to the left of the error message to expand it fully (another click
hides it totally, and a third click brings back the abbreviated form). Read
the bottom of an error message first, it is your best explanation. Here a
ZeroDivisionError is not 100% accurate, but is close. The matrix is not in-
vertible, not dissimilar to how we cannot divide scalars by zero. The remainder
of the message begins at the top showing were the error first happened in your
code and then the various places where intermediate functions were called,
until the actual piece of Sage where the problem occurred. Sometimes this
information will give you some clues, sometimes it is totally undecipherable.
So do not let it scare you if it seems mysterious, but do remember to always
read the last line first, then go back and read the first few lines for something
that looks like your code.

1.3.3 Annotating Your Work
It is easy to comment on your work when you use the Sage Notebook. (The
following only applies if you are reading this within a Sage Notebook. If you
are not, then perhaps you can go open up a worksheet in the Sage Notebook
and experiment there.) You can open up a small word-processor by hovering
your mouse until you get a skinny blue bar again, but now when you click, also
hold the SHIFT key at the same time. Experiment with fonts, colors, bullet

CHAPTER 1. PRELIMINARIES 18

lists, etc and then click the “Save changes” button to exit. Double-click on
your text if you need to go back and edit it later.

Open the word-processor again to create a new bit of text (maybe next to
the empty compute cell just below). Type all of the following exactly:

Pythagorean Theorem: $c^2=a^2+b^2$

and save your changes. The symbols between the dollar signs are written
according to the mathematical typesetting language known as TEX — cruise
the internet to learn more about this very popular tool. (Well, it is extremely
popular among mathematicians and physical scientists.)

1.3.4 Lists
Much of our interaction with sets will be through Sage lists. These are not
really sets — they allow duplicates, and order matters. But they are so close
to sets, and so easy and powerful to use that we will use them regularly. We
will use a fun made-up list for practice, the quote marks mean the items are
just text, with no special mathematical meaning. Execute these compute cells
as we work through them.

zoo = [' snake ' , ' parrot ' , ' elephant ' , ' baboon ' , ' beetle ']
zoo

[' snake ' , ' parrot ' , ' elephant ' , ' baboon ' , ' beetle ']

So the square brackets define the boundaries of our list, commas separate
items, and we can give the list a name. To work with just one element of the
list, we use the name and a pair of brackets with an index. Notice that lists
have indices that begin counting at zero. This will seem odd at first and will
seem very natural later.

zoo [2]

' elephant '

We can add a new creature to the zoo, it is joined up at the far right end.

zoo.append(' ostrich '); zoo

[' snake ' , ' parrot ' , ' elephant ' , ' baboon ' , ' beetle ' ,
' ostrich ']

We can remove a creature.

zoo.remove(' parrot ')
zoo

[' snake ' , ' elephant ' , ' baboon ' , ' beetle ' , ' ostrich ']

We can extract a sublist. Here we start with element 1 (the elephant) and
go all the way up to, but not including, element 3 (the beetle). Again a bit
odd, but it will feel natural later. For now, notice that we are extracting two
elements of the lists, exactly 3− 1 = 2 elements.

mammals = zoo [1:3]
mammals

CHAPTER 1. PRELIMINARIES 19

[' elephant ' , ' baboon ']

Often we will want to see if two lists are equal. To do that we will need to
sort a list first. A function creates a new, sorted list, leaving the original alone.
So we need to save the new one with a new name.

newzoo = sorted(zoo)
newzoo

[' baboon ' , ' beetle ' , ' elephant ' , ' ostrich ' , ' snake ']

zoo.sort()
zoo

[' baboon ' , ' beetle ' , ' elephant ' , ' ostrich ' , ' snake ']

Notice that if you run this last compute cell your zoo has changed and
some commands above will not necessarily execute the same way. If you want
to experiment, go all the way back to the first creation of the zoo and start
executing cells again from there with a fresh zoo.

A construction called a list comprehension is especially powerful, espe-
cially since it almost exactly mirrors notation we use to describe sets. Suppose
we want to form the plural of the names of the creatures in our zoo. We build
a new list, based on all of the elements of our old list.

plurality_zoo = [animal+ ' s ' for animal in zoo]
plurality_zoo

[' baboons ' , ' beetles ' , ' elephants ' , ' ostrichs ' , ' snakes ']

Almost like it says: we add an “s” to each animal name, for each animal in
the zoo, and place them in a new list. Perfect. (Except for getting the plural
of “ostrich” wrong.)

1.3.5 Lists of Integers
One final type of list, with numbers this time. The srange() function will
create lists of integers. (The “s” in the name stands for “Sage” and so will
produce integers that Sage understands best. Many early difficulties with Sage
and group theory can be alleviated by using only this command to create lists
of integers.) In its simplest form an invocation like srange(12) will create a
list of 12 integers, starting at zero and working up to, but not including, 12.
Does this sound familiar?

dozen = srange (12); dozen

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Here are two other forms, that you should be able to understand by studying
the examples.

teens = srange (13, 20); teens

[13, 14, 15, 16, 17, 18, 19]

CHAPTER 1. PRELIMINARIES 20

decades = srange (1900 , 2000, 10); decades

[1900 , 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990]

1.3.6 Saving and Sharing Your Work
There is a “Save” button in the upper-right corner of the Sage Notebook. This
will save a current copy of your worksheet that you can retrieve your work from
within your notebook again later, though you have to re-execute all the cells
when you re-open the worksheet.

There is also a “File” drop-down list, on the left, just above your very
top compute cell (not be confused with your browser’s File menu item!). You
will see a choice here labeled “Save worksheet to a file...” When you do this,
you are creating a copy of your worksheet in the sws format (short for “Sage
WorkSheet”). You can email this file, or post it on a website, for other Sage
users and they can use the “Upload” link on the homepage of their notebook
to incorporate a copy of your worksheet into their notebook.

There are other ways to share worksheets that you can experiment with, but
this gives you one way to share any worksheet with anybody almost anywhere.

We have covered a lot here in this section, so come back later to pick up
tidbits you might have missed. There are also many more features in the Sage
Notebook that we have not covered.

1.4 Exercises
Warm-up

This is a meaningless subdivision of the exercises for the sake of testing output.
1. Suppose that

A = {x : x ∈ N and x is even},
B = {x : x ∈ N and x is prime},
C = {x : x ∈ N and x is a multiple of 5}.

Describe each of the following sets.

(a) A ∩B

(b) B ∩ C

(c) A ∪B

(d) A ∩ (B ∪ C)

2. If A = {a, b, c}, B = {1, 2, 3}, C = {x}, and D = ∅, list all of the elements
in each of the following sets.

(a) A×B

(b) B ×A

(c) A×B × C

(d) A×D

Hint. (a) A×B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)};
(d) A×D = ∅.

3. Find an example of two nonempty sets A and B for which A×B = B×A
is true.

4. Prove A ∪ ∅ = A and A ∩ ∅ = ∅.
5. Prove A ∪B = B ∪A and A ∩B = B ∩A.

CHAPTER 1. PRELIMINARIES 21

6. Prove A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
Hint. If x ∈ A ∪ (B ∩ C), then either x ∈ A or x ∈ B ∩ C. Thus,
x ∈ A ∪ B and A ∪ C. Hence, x ∈ (A ∪ B) ∩ (A ∪ C). Therefore,
A ∪ (B ∩ C) ⊂ (A ∪ B) ∩ (A ∪ C). Conversely, if x ∈ (A ∪ B) ∩ (A ∪ C),
then x ∈ A ∪ B and A ∪ C. Thus, x ∈ A or x is in both B and C. So
x ∈ A ∪ (B ∩ C) and therefore (A ∪B) ∩ (A ∪ C) ⊂ A ∪ (B ∩ C). Hence,
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

7. Prove A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
8. Prove A ⊂ B if and only if A ∩B = A.
9. Prove (A ∩B)′ = A′ ∪B′.
10. Prove A ∪B = (A ∩B) ∪ (A \B) ∪ (B \A).

Hint. (A ∩ B) ∪ (A \ B) ∪ (B \ A) = (A ∩ B) ∪ (A ∩ B′) ∪ (B ∩ A′) =
[A ∩ (B ∪B′)] ∪ (B ∩A′) = A ∪ (B ∩A′) = (A ∪B) ∩ (A ∪A′) = A ∪B.

11. Prove (A ∪B)× C = (A× C) ∪ (B × C).
12. Prove (A ∩B) \B = ∅.
13. Prove (A ∪B) \B = A \B.
14. Prove A \ (B ∪ C) = (A \B) ∩ (A \ C).

Hint. A \ (B ∪ C) = A ∩ (B ∪ C)′ = (A ∩ A) ∩ (B′ ∩ C ′) = (A ∩ B′) ∩
(A ∩ C ′) = (A \B) ∩ (A \ C).

More Exercises

This is a meaningless subdivision of the exercises for the sake of testing output.
15. Prove A ∩ (B \ C) = (A ∩B) \ (A ∩ C).
16. Prove (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).
17. Which of the following relations f : Q → Q define a mapping? In each

case, supply a reason why f is or is not a mapping.

(a) f(p/q) =
p+ 1

p− 2

(b) f(p/q) =
3p

3q

(c) f(p/q) =
p+ q

q2

(d) f(p/q) =
3p2

7q2
− p

q
18. Determine which of the following functions are one-to-one and which are

onto. If the function is not onto, determine its range.

(a) f : R → R defined by f(x) = ex

(b) f : Z → Z defined by f(n) = n2 + 3

(c) f : R → R defined by f(x) = sinx

(d) f : Z → Z defined by f(x) = x2

Hint. (a) f is one-to-one but not onto. f(R) = {x ∈ R : x > 0}. (c) f
is neither one-to-one nor onto. f(R) = {x : −1 ≤ x ≤ 1}.

19. Let f : A → B and g : B → C be invertible mappings; that is, mappings
such that f−1 and g−1 exist. Show that (g ◦ f)−1 = f−1 ◦ g−1.

20.

(a) Define a function f : N → N that is one-to-one but not onto.

CHAPTER 1. PRELIMINARIES 22

(b) Define a function f : N → N that is onto but not one-to-one.

Hint. (a) f(n) = n+ 1.
21. Prove the relation defined on R2 by (x1, y1) ∼ (x2, y2) if x2

1+y21 = x2
2+y22

is an equivalence relation.
22. Let f : A → B and g : B → C be maps.

(a) If f and g are both one-to-one functions, show that g ◦ f is one-to-
one.

(b) If g ◦ f is onto, show that g is onto.

(c) If g ◦ f is one-to-one, show that f is one-to-one.

(d) If g ◦ f is one-to-one and f is onto, show that g is one-to-one.

(e) If g ◦ f is onto and g is one-to-one, show that f is onto.

Hint. (a) Let x, y ∈ A. Then g(f(x)) = (g◦f)(x) = (g◦f)(y) = g(f(y)).
Thus, f(x) = f(y) and x = y, so g ◦ f is one-to-one. (b) Let c ∈ C, then
c = (g ◦ f)(x) = g(f(x)) for some x ∈ A. Since f(x) ∈ B, g is onto.

23. Define a function on the real numbers by

f(x) =
x+ 1

x− 1
.

What are the domain and range of f? What is the inverse of f? Compute
f ◦ f−1 and f−1 ◦ f .

24. Let f : X → Y be a map with A1, A2 ⊂ X and B1, B2 ⊂ Y .

(a) Prove f(A1 ∪A2) = f(A1) ∪ f(A2).

(b) Prove f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2). Give an example in which
equality fails.

(c) Prove f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2), where

f−1(B) = {x ∈ X : f(x) ∈ B}.

(d) Prove f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

(e) Prove f−1(Y \B1) = X \ f−1(B1).

Hint. (a) Let y ∈ f(A1 ∪ A2). Then there exists an x ∈ A1 ∪ A2 such
that f(x) = y. Hence, y ∈ f(A1) or f(A2). Therefore, y ∈ f(A1) ∪
f(A2). Consequently, f(A1 ∪ A2) ⊂ f(A1) ∪ f(A2). Conversely, if y ∈
f(A1) ∪ f(A2), then y ∈ f(A1) or f(A2). Hence, there exists an x ∈ A1

or there exists an x ∈ A2 such that f(x) = y. Thus, there exists an
x ∈ A1 ∪A2 such that f(x) = y. Therefore, f(A1) ∪ f(A2) ⊂ f(A1 ∪A2),
and f(A1 ∪A2) = f(A1) ∪ f(A2).

25. Determine whether or not the following relations are equivalence relations
on the given set. If the relation is an equivalence relation, describe the
partition given by it. If the relation is not an equivalence relation, state
why it fails to be one.

CHAPTER 1. PRELIMINARIES 23

(a) x ∼ y in R if x ≥ y

(b) m ∼ n in Z if mn > 0

(c) x ∼ y in R if |x− y| ≤ 4

(d) m ∼ n in Z if m ≡ n (mod 6)

26. Define a relation ∼ on R2 by stating that (a, b) ∼ (c, d) if and only
if a2 + b2 ≤ c2 + d2. Show that ∼ is reflexive and transitive but not
symmetric.

27. Show that an m× n matrix gives rise to a well-defined map from Rn to
Rm.

28. Find the error in the following argument by providing a counterexample.
“The reflexive property is redundant in the axioms for an equivalence
relation. If x ∼ y, then y ∼ x by the symmetric property. Using the
transitive property, we can deduce that x ∼ x.”
Hint. Let X = N ∪ {

√
2 } and define x ∼ y if x+ y ∈ N.

29. Projective Real Line. Define a relation on R2 \ {(0, 0)} by letting
(x1, y1) ∼ (x2, y2) if there exists a nonzero real number λ such that
(x1, y1) = (λx2, λy2). Prove that ∼ defines an equivalence relation on
R2 \ (0, 0). What are the corresponding equivalence classes? This equiv-
alence relation defines the projective line, denoted by P(R), which is very
important in geometry.

1.5 Sage Exercises
1. This exercise is just about making sure you know how to use Sage. Lo-

gin to a Sage Notebook server and create a new worksheet. Do some
non-trivial computation, maybe a pretty plot or some gruesome numer-
ical computation to an insane precision. Create an interesting list and
experiment with it some. Maybe include some nicely formatted text or
TEX using the included mini-word-processor of the Sage Notebook (hover
until a blue bar appears between cells and then shift-click).

Use whatever mechanism your instructor has in place for submitting
your work. Or save your worksheet and then trade worksheets via email
(or another electronic method) with a classmate.

1.6 References and Suggested Readings
[1] Artin, M. Abstract Algebra. 2nd ed. Pearson, Upper Saddle River, NJ,

2011.
[2] Childs, L. A Concrete Introduction to Higher Algebra. 2nd ed. Springer-

Verlag, New York, 1995.
[3] Dummit, D. and Foote, R. Abstract Algebra. 3rd ed. Wiley, New York,

2003.
[4] Ehrlich, G. Fundamental Concepts of Algebra. PWS-KENT, Boston,

1991.
[5] Fraleigh, J. B. A First Course in Abstract Algebra. 7th ed. Pearson,

Upper Saddle River, NJ, 2003.
[6] Gallian, J. A. Contemporary Abstract Algebra. 7th ed. Brooks/Cole,

Belmont, CA, 2009.
[7] Halmos, P. Naive Set Theory. Springer, New York, 1991. One of the best

references for set theory.

CHAPTER 1. PRELIMINARIES 24

[8] Herstein, I. N. Abstract Algebra. 3rd ed. Wiley, New York, 1996.
[9] Hungerford, T. W. Algebra. Springer, New York, 1974. One of the

standard graduate algebra texts.
[10] Lang, S. Algebra. 3rd ed. Springer, New York, 2002. Another standard

graduate text.
[11] Lidl, R. and Pilz, G. Applied Abstract Algebra. 2nd ed. Springer, New

York, 1998.
[12] Mackiw, G. Applications of Abstract Algebra. Wiley, New York, 1985.
[13] Nickelson, W. K. Introduction to Abstract Algebra. 3rd ed. Wiley, New

York, 2006.
[14] Solow, D. How to Read and Do Proofs. 5th ed. Wiley, New York, 2009.
[15] van der Waerden, B. L. A History of Algebra. Springer-Verlag, New York,

1985. An account of the historical development of algebra.

Chapter 2

The Integers

The integers are the building blocks of mathematics. In this chapter we will
investigate the fundamental properties of the integers, including mathematical
induction, the division algorithm, and the Fundamental Theorem of Arith-
metic.

2.1 Mathematical Induction and Math in a Title
A 6⊂ B

Suppose we wish to show that

1 + 2 + · · ·+ n =
n(n+ 1)

2

for any natural number n. This formula is easily verified for small numbers
such as n = 1, 2, 3, or 4, but it is impossible to verify for all natural numbers
on a case-by-case basis. To prove the formula true in general, a more generic
method is required.

Suppose we have verified the equation for the first n cases. We will attempt
to show that we can generate the formula for the (n + 1)th case from this
knowledge. The formula is true for n = 1 since

1 =
1(1 + 1)

2
.

If we have verified the first n cases, then

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ n+ 1

=
n2 + 3n+ 2

2

=
(n+ 1)[(n+ 1) + 1]

2
.

This is exactly the formula for the (n+ 1)th case.
This method of proof is known as mathematical induction. Instead of

attempting to verify a statement about some subset S of the positive integers
N on a case-by-case basis, an impossible task if S is an infinite set, we give a
specific proof for the smallest integer being considered, followed by a generic
argument showing that if the statement holds for a given case, then it must also
hold for the next case in the sequence. We summarize mathematical induction
in the following axiom.

25

CHAPTER 2. THE INTEGERS 26

Principle 2.1.1 First Principle of Mathematical Induction. Let S(n)
be a statement about integers for n ∈ N and suppose S(n0) is true for some
integer n0. If for all integers k with k ≥ n0, S(k) implies that S(k+1) is true,
then S(n) is true for all integers n greater than or equal to n0.
Example 2.1.2 An Inequality for Powers of 2. For all integers n ≥ 3,
2n > n+ 4. Since

8 = 23 > 3 + 4 = 7,

the statement is true for n0 = 3. Assume that 2k > k + 4 for k ≥ 3. Then
2k+1 = 2 · 2k > 2(k + 4). But

2(k + 4) = 2k + 8 > k + 5 = (k + 1) + 4

since k is positive. Hence, by induction, the statement holds for all integers
n ≥ 3. □
Example 2.1.3 Some Integers Divisible by 9. Every integer 10n+1 + 3 ·
10n + 5 is divisible by 9 for n ∈ N. For n = 1,

101+1 + 3 · 10 + 5 = 135 = 9 · 15

is divisible by 9. Suppose that 10k+1 + 3 · 10k + 5 is divisible by 9 for k ≥ 1.
Then

10(k+1)+1 + 3 · 10k+1 + 5 = 10k+2 + 3 · 10k+1 + 50− 45

= 10(10k+1 + 3 · 10k + 5)− 45

is divisible by 9. □
Example 2.1.4 The Binomial Theorem. We will prove the binomial
theorem using mathematical induction; that is,

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k,

where a and b are real numbers, n ∈ N, and(
n

k

)
=

n!

k!(n− k)!

is the binomial coefficient. We first show that(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
.

This result follows from(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
(n+ 1)!

k!(n+ 1− k)!

=

(
n+ 1

k

)
.

If n = 1, the binomial theorem is easy to verify. Now assume that the result
is true for n greater than or equal to 1. Then

(a+ b)n+1 = (a+ b)(a+ b)n

CHAPTER 2. THE INTEGERS 27

= (a+ b)

(
n∑

k=0

(
n

k

)
akbn−k

)

=

n∑
k=0

(
n

k

)
ak+1bn−k +

n∑
k=0

(
n

k

)
akbn+1−k

= an+1 +

n∑
k=1

(
n

k − 1

)
akbn+1−k +

n∑
k=1

(
n

k

)
akbn+1−k + bn+1

= an+1 +

n∑
k=1

[(
n

k − 1

)
+

(
n

k

)]
akbn+1−k + bn+1

=

n+1∑
k=0

(
n+ 1

k

)
akbn+1−k.

□
We have an equivalent statement of the Principle of Mathematical Induction

that is often very useful.

Principle 2.1.5 Second Principle of Mathematical Induction. Let S(n)
be a statement about integers for n ∈ N and suppose S(n0) is true for some
integer n0. If S(n0), S(n0 + 1), . . . , S(k) imply that S(k + 1) for k ≥ n0, then
the statement S(n) is true for all integers n ≥ n0.

A nonempty subset S of Z is well-ordered if S contains a least element.
Notice that the set Z is not well-ordered since it does not contain a smallest
element. However, the natural numbers are well-ordered.
Principle 2.1.6 Principle of Well-Ordering. Every nonempty subset of
the natural numbers is well-ordered.

The Principle of Well-Ordering is equivalent to the Principle of Mathemat-
ical Induction.
Lemma 2.1.7 The Principle of Mathematical Induction implies that 1 is the
least positive natural number.

Proof. Let S = {n ∈ N : n ≥ 1}. Then 1 ∈ S. Now assume that n ∈ S; that is,
n ≥ 1. Since n+ 1 ≥ 1, n+ 1 ∈ S; hence, by induction, every natural number
is greater than or equal to 1. ■
Theorem 2.1.8 The Principle of Mathematical Induction implies the Principle
of Well-Ordering. That is, every nonempty subset of N contains a least element.

Proof. We must show that if S is a nonempty subset of the natural numbers,
then S contains a least element. If S contains 1, then the theorem is true by
Lemma 2.1.7. Assume that if S contains an integer k such that 1 ≤ k ≤ n, then
S contains a least element. We will show that if a set S contains an integer
less than or equal to n + 1, then S has a least element. If S does not contain
an integer less than n + 1, then n + 1 is the smallest integer in S. Otherwise,
since S is nonempty, S must contain an integer less than or equal to n. In this
case, by induction, S contains a least element. ■

Induction can also be very useful in formulating definitions. For instance,
there are two ways to define n!, the factorial of a positive integer n.

• The explicit definition: n! = 1 · 2 · 3 · · · (n− 1) · n.

• The inductive or recursive definition: 1! = 1 and n! = n(n−1)! for n > 1.

Every good mathematician or computer scientist knows that looking at

CHAPTER 2. THE INTEGERS 28

problems recursively, as opposed to explicitly, often results in better under-
standing of complex issues.

2.2 The Division Algorithm
An application of the Principle of Well-Ordering that we will use often is the
division algorithm.
Theorem 2.2.1 Division Algorithm. Let a and b be integers, with b > 0.
Then there exist unique integers q and r such that

a = bq + r

where 0 ≤ r < b.
Proof. This is a perfect example of the existence-and-uniqueness type of proof.
We must first prove that the numbers q and r actually exist. Then we must
show that if q′ and r′ are two other such numbers, then q = q′ and r = r′.
Existence of q and r. Let

S = {a− bk : k ∈ Z and a− bk ≥ 0}.

If 0 ∈ S, then b divides a, and we can let q = a/b and r = 0. If 0 /∈ S, we can
use the Well-Ordering Principle. We must first show that S is nonempty. If
a > 0, then a − b · 0 ∈ S. If a < 0, then a − b(2a) = a(1 − 2b) ∈ S. In either
case S 6= ∅. By the Well-Ordering Principle, S must have a smallest member,
say r = a−bq. Therefore, a = bq+r, r ≥ 0. We now show that r < b. Suppose
that r > b. Then

a− b(q + 1) = a− bq − b = r − b > 0.

In this case we would have a−b(q+1) in the set S. But then a−b(q+1) < a−bq,
which would contradict the fact that r = a − bq is the smallest member of S.
So r ≤ b. Since 0 /∈ S, r 6= b and so r < b.
Uniqueness of q and r. Suppose there exist integers r, r′, q, and q′ such that

a = bq + r, 0 ≤ r < b and a = bq′ + r′, 0 ≤ r′ < b.

Then bq + r = bq′ + r′. Assume that r′ ≥ r. From the last equation we have
b(q − q′) = r′ − r; therefore, b must divide r′ − r and 0 ≤ r′ − r ≤ r′ < b. This
is possible only if r′ − r = 0. Hence, r = r′ and q = q′. ■

Let a and b be integers. If b = ak for some integer k, we write a | b. An
integer d is called a common divisor of a and b if d | a and d | b. The
greatest common divisor of integers a and b is a positive integer d such
that d is a common divisor of a and b and if d′ is any other common divisor
of a and b, then d′ | d. We write d = gcd(a, b); for example, gcd(24, 36) = 12
and gcd(120, 102) = 6. We say that two integers a and b are relatively prime
if gcd(a, b) = 1.

Theorem 2.2.2 Let a and b be nonzero integers. Then there exist integers r
and s such that

gcd(a, b) = ar + bs.

Furthermore, the greatest common divisor of a and b is unique.

Proof. Let
S = {am+ bn : m,n ∈ Z and am+ bn > 0}.

CHAPTER 2. THE INTEGERS 29

Clearly, the set S is nonempty; hence, by the Well-Ordering Principle S must
have a smallest member, say d = ar + bs. We claim that d = gcd(a, b). Write
a = dq + r′ where 0 ≤ r′ < d. If r′ > 0, then

r′ = a− dq

= a− (ar + bs)q

= a− arq − bsq

= a(1− rq) + b(−sq),

which is in S. But this would contradict the fact that d is the smallest member
of S. Hence, r′ = 0 and d divides a. A similar argument shows that d divides
b. Therefore, d is a common divisor of a and b.
Suppose that d′ is another common divisor of a and b, and we want to show
that d′ | d. If we let a = d′h and b = d′k, then

d = ar + bs = d′hr + d′ks = d′(hr + ks).

So d′ must divide d. Hence, d must be the unique greatest common divisor of
a and b. ■
Corollary 2.2.3 Let a and b be two integers that are relatively prime. Then
there exist integers r and s such that ar + bs = 1.

2.2.1 The Euclidean Algorithm
Among other things, Theorem 2.2.2 allows us to compute the greatest common
divisor of two integers.
Example 2.2.4 Greatest Common Divisor of Two Integers. Let us
compute the greatest common divisor of 945 and 2415. First observe that

2415 = 945 · 2 + 525

945 = 525 · 1 + 420

525 = 420 · 1 + 105

420 = 105 · 4 + 0.

Reversing our steps, 105 divides 420, 105 divides 525, 105 divides 945, and
105 divides 2415. Hence, 105 divides both 945 and 2415. If d were another com-
mon divisor of 945 and 2415, then d would also have to divide 105. Therefore,
gcd(945, 2415) = 105.

If we work backward through the above sequence of equations, we can also
obtain numbers r and s such that 945r + 2415s = 105. Observe that

105 = 525 + (−1) · 420
= 525 + (−1) · [945 + (−1) · 525]
= 2 · 525 + (−1) · 945
= 2 · [2415 + (−2) · 945] + (−1) · 945
= 2 · 2415 + (−5) · 945.

So r = −5 and s = 2. Notice that r and s are not unique, since r = 41 and
s = −16 would also work. □

To compute gcd(a, b) = d, we are using repeated divisions to obtain a
decreasing sequence of positive integers r1 > r2 > · · · > rn = d; that is,

b = aq1 + r1

CHAPTER 2. THE INTEGERS 30

a = r1q2 + r2

r1 = r2q3 + r3

...
rn−2 = rn−1qn + rn

rn−1 = rnqn+1.

To find r and s such that ar+ bs = d, we begin with this last equation and
substitute results obtained from the previous equations:

d = rn

= rn−2 − rn−1qn

= rn−2 − qn(rn−3 − qn−1rn−2)

= −qnrn−3 + (1 + qnqn−1)rn−2

...
= ra+ sb.

The algorithm that we have just used to find the greatest common divisor
d of two integers a and b and to write d as the linear combination of a and b
is known as the Euclidean algorithm.

2.2.2 Prime Numbers
Let p be an integer such that p > 1. We say that p is a prime number, or
simply p is prime, if the only positive numbers that divide p are 1 and p itself.
An integer n > 1 that is not prime is said to be composite.

Lemma 2.2.5 (Euclid) Let a and b be integers and p be a prime number. If
p | ab, then either p | a or p | b.

Proof. Suppose that p does not divide a. We must show that p | b. Since
gcd(a, p) = 1, there exist integers r and s such that ar + ps = 1. So

b = b(ar + ps) = (ab)r + p(bs).

Since p divides both ab and itself, p must divide b = (ab)r + p(bs). ■
Theorem 2.2.6 (Euclid) There exist an infinite number of primes.

Proof. We will prove this theorem by contradiction. Suppose that there are
only a finite number of primes, say p1, p2, . . . , pn. Let P = p1p2 · · · pn+1. Then
P must be divisible by some pi for 1 ≤ i ≤ n. In this case, pi must divide
P −p1p2 · · · pn = 1, which is a contradiction. Hence, either P is prime or there
exists an additional prime number p 6= pi that divides P . ■
Theorem 2.2.7 Fundamental Theorem of Arithmetic. Let n be an
integer such that n > 1. Then

n = p1p2 · · · pk,

where p1, . . . , pk are primes (not necessarily distinct). Furthermore, this fac-
torization is unique; that is, if

n = q1q2 · · · ql,

then k = l and the qi’s are just the pi’s rearranged.

CHAPTER 2. THE INTEGERS 31

Proof. Uniqueness. To show uniqueness we will use induction on n. The
theorem is certainly true for n = 2 since in this case n is prime. Now assume
that the result holds for all integers m such that 1 ≤ m < n, and

n = p1p2 · · · pk = q1q2 · · · ql,

where p1 ≤ p2 ≤ · · · ≤ pk and q1 ≤ q2 ≤ · · · ≤ ql. By Lemma 2.2.5, p1 | qi for
some i = 1, . . . , l and q1 | pj for some j = 1, . . . , k. Since all of the pi’s and qi’s
are prime, p1 = qi and q1 = pj . Hence, p1 = q1 since p1 ≤ pj = q1 ≤ qi = p1.
By the induction hypothesis,

n′ = p2 · · · pk = q2 · · · ql

has a unique factorization. Hence, k = l and qi = pi for i = 1, . . . , k.
Existence. To show existence, suppose that there is some integer that cannot
be written as the product of primes. Let S be the set of all such numbers. By
the Principle of Well-Ordering, S has a smallest number, say a. If the only
positive factors of a are a and 1, then a is prime, which is a contradiction.
Hence, a = a1a2 where 1 < a1 < a and 1 < a2 < a. Neither a1 ∈ S nor a2 ∈ S,
since a is the smallest element in S. So

a1 = p1 · · · pr
a2 = q1 · · · qs.

Therefore,
a = a1a2 = p1 · · · prq1 · · · qs.

So a /∈ S, which is a contradiction. ■

2.2.3 Historical Note
Prime numbers were first studied by the ancient Greeks. Two important results
from antiquity are Euclid’s proof that an infinite number of primes exist and
the Sieve of Eratosthenes, a method of computing all of the prime numbers
less than a fixed positive integer n. One problem in number theory is to find
a function f such that f(n) is prime for each integer n. Pierre Fermat (1601?–
1665) conjectured that 22

n

+ 1 was prime for all n, but later it was shown by
Leonhard Euler (1707–1783) that

22
5

+ 1 = 4,294,967,297

is a composite number. One of the many unproven conjectures about prime
numbers is Goldbach’s Conjecture. In a letter to Euler in 1742, Christian
Goldbach stated the conjecture that every even integer with the exception of
2 seemed to be the sum of two primes: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5,
Although the conjecture has been verified for the numbers up through 4×1018,
it has yet to be proven in general. Since prime numbers play an important
role in public key cryptography, there is currently a great deal of interest in
determining whether or not a large number is prime.
Remark 2.2.8 Sage. Sage’s original purpose was to support research in
number theory, so it is perfect for the types of computations with the integers
that we have in this chapter.

CHAPTER 2. THE INTEGERS 32

2.3 Sage
Many properties of the algebraic objects we will study can be determined from
properties of associated integers. And Sage has many powerful functions for
analyzing integers.

2.3.1 Division Algorithm
The code a % b will return the remainder upon division of a by b. In other
words, the result is the unique integer r such that (1) 0 ≤ r < b, and (2)
a = bq + r for some integer q (the quotient), as guaranteed by the Division
Algorithm (Theorem 2.2.1). Then (a− r)/b will equal q. For example,

r = 14 % 3
r

2

q = (14 - r)/3
q

4

It is also possible to get both the quotient and remainder at the same time
with the .quo_rem() method (quotient and remainder).

a = 14
b = 3
a.quo_rem(b)

(4, 2)

A remainder of zero indicates divisibility. So (a % b) == 0 will return True
if b divides a, and will otherwise return False.

(20 % 5) == 0

True

(17 % 4) == 0

False

The .divides() method is another option.

c = 5
c.divides (20)

True

d = 4
d.divides (17)

False

CHAPTER 2. THE INTEGERS 33

2.3.2 Greatest Common Divisor
The greatest common divisor of a and b is obtained with the command gcd(a,
b), where in our first uses, a and b are integers. Later, a and b can be other
objects with a notion of divisibility and “greatness,” such as polynomials. For
example,

gcd (2776 , 2452)

4

We can use the gcd command to determine if a pair of integers are relatively
prime.

a = 31049
b = 2105
gcd(a, b) == 1

True

a = 3563
b = 2947
gcd(a, b) == 1

False

The command xgcd(a,b) (“eXtended GCD”) returns a triple where the
first element is the greatest common divisor of a and b (as with the gcd(a,b)
command above), but the next two elements are values of r and s such that
ra+ sb = gcd(a, b).

xgcd (633 ,331)

(1, -137, 262)

Portions of the triple can be extracted using [] (“indexing”) to access the
entries of the triple, starting with the first as number 0. For example, the
following should always return the result True, even if you change the values
of a and b. Try changing the values of a and b below, to see that the result is
always True.

a = 633
b = 331
extended = xgcd(a, b)
g = extended [0]
r = extended [1]
s = extended [2]
g == r*a + s*b

True

Studying this block of code will go a long way towards helping you get the
most out of Sage’s output. Note that = is how a value is assigned to a variable,
while as in the last line, == is how we compare two items for equality.

CHAPTER 2. THE INTEGERS 34

2.3.3 Primes and Factoring
The method .is_prime() will determine if an integer is prime or not.

a = 117371
a.is_prime ()

True

b = 14547073
b.is_prime ()

False

b == 1597 * 9109

True

The command random_prime(a, proof=True) will generate a random prime
number between 2 and a. Experiment by executing the following two compute
cells several times. (Replacing proof=True by proof=False will speed up the
search, but there will be a very, very, very small probability the result will not
be prime.)

a = random_prime (10^21 , proof=True)
a

424729101793542195193

a.is_prime ()

True

The command prime_range(a, b) returns an ordered list of all the primes
from a to b− 1, inclusive. For example,

prime_range (500, 550)

[503, 509, 521, 523, 541, 547]

The commands next_prime(a) and previous_prime(a) are other ways to
get a single prime number of a desired size. Give them a try below if you
have an empty compute cell there (as you will if you are reading in the Sage
Notebook, or are reading the online version). (The hash symbol, #, is used to
indicate a “comment” line, which will not be evaluated by Sage. So erase this
line, or start on the one below it.)In addition to checking if integers are prime
or not, or generating prime numbers, Sage can also decompose any integer into
its prime factors, as described by the Fundamental Theorem of Arithmetic
(Theorem 2.2.7).

a = 2600
a.factor ()

2^3 * 5^2 * 13

CHAPTER 2. THE INTEGERS 35

So 2600 = 23×52×13 and this is the unique way to write 2600 as a product
of prime numbers (other than rearranging the order of the primes themselves
in the product).

While Sage will print a factorization nicely, it is carried internally as a list
of pairs of integers, with each pair being a base (a prime number) and an
exponent (a positive integer). Study the following carefully, as it is another
good exercise in working with Sage output in the form of lists.

a = 2600
factored = a.factor ()
first_term = factored [0]
first_term

(2, 3)

second_term = factored [1]
second_term

(5, 2)

third_term = factored [2]
third_term

(13, 1)

first_prime = first_term [0]
first_prime

2

first_exponent = first_term [1]
first_exponent

3

The next compute cell reveals the internal version of the factorization by
asking for the actual list. And we show how you could determine exactly how
many terms the factorization has by using the length command, len().

list(factored)

[(2, 3), (5, 2), (13, 1)]

len(factored)

3

Can you extract the next two primes, and their exponents, from a?

CHAPTER 2. THE INTEGERS 36

2.4 Exercises
1. Prove that

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

for n ∈ N.
Answer. The base case, S(1) : [1(1 + 1)(2(1) + 1)]/6 = 1 = 12 is true.

Assume that S(k) : 12 + 22 + · · · + k2 = [k(k + 1)(2k + 1)]/6 is true.
Then

12 + 22 + · · ·+ k2 + (k + 1)2 = [k(k + 1)(2k + 1)]/6 + (k + 1)2

= [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6,

and so S(k + 1) is true. Thus, S(n) is true for all positive integers n.
2. Prove that

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4

for n ∈ N.
3. Prove that n! > 2n for n ≥ 4.

Answer. The base case, S(4) : 4! = 24 > 16 = 24 is true. Assume
S(k) : k! > 2k is true. Then (k + 1)! = k!(k + 1) > 2k · 2 = 2k+1, so
S(k + 1) is true. Thus, S(n) is true for all positive integers n.

4. Prove that

x+ 4x+ 7x+ · · ·+ (3n− 2)x =
n(3n− 1)x

2

for n ∈ N.
5. Prove that 10n+1 + 10n + 1 is divisible by 3 for n ∈ N.
6. Prove that 4 · 102n + 9 · 102n−1 + 5 is divisible by 99 for n ∈ N.
7. Show that

n
√
a1a2 · · · an ≤ 1

n

n∑
k=1

ak.

8. Use induction to prove that 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1 for n ∈ N.
9. Prove the Leibniz rule for f (n)(x), where f (n) is the nth derivative of f ;

that is, show that

(fg)(n)(x) =

n∑
k=0

(
n

k

)
f (k)(x)g(n−k)(x).

Hint. Follow the proof in Example 2.1.4.
10. Prove that

1

2
+

1

6
+ · · ·+ 1

n(n+ 1)
=

n

n+ 1

for n ∈ N.
11. If x is a nonnegative real number, then show that (1 + x)n − 1 ≥ nx for

n = 0, 1, 2,
Hint. The base case, S(0) : (1+ x)0 − 1 = 0 ≥ 0 = 0 · x is true. Assume
S(k) : (1 + x)k − 1 ≥ kx is true. Then

(1 + x)k+1 − 1 = (1 + x)(1 + x)k − 1

CHAPTER 2. THE INTEGERS 37

= (1 + x)k + x(1 + x)k − 1

≥ kx+ x(1 + x)k

≥ kx+ x

= (k + 1)x,

so S(k + 1) is true. Therefore, S(n) is true for all positive integers n.
12. Power Sets. Let X be a set. Define the power set of X, denoted P(X),

to be the set of all subsets of X. For example,

P({a, b}) = {∅, {a}, {b}, {a, b}}.

For every positive integer n, show that a set with exactly n elements has
a power set with exactly 2n elements.

13. Prove that the two principles of mathematical induction stated in Sec-
tion 2.1 are equivalent.

14. Show that the Principle of Well-Ordering for the natural numbers implies
that 1 is the smallest natural number. Use this result to show that the
Principle of Well-Ordering implies the Principle of Mathematical Induc-
tion; that is, show that if S ⊂ N such that 1 ∈ S and n+ 1 ∈ S whenever
n ∈ S, then S = N.

15. For each of the following pairs of numbers a and b, calculate gcd(a, b)
and find integers r and s such that gcd(a, b) = ra+ sb.

(a) 14 and 39

(b) 234 and 165

(c) 1739 and 9923

(d) 471 and 562

(e) 23,771 and 19,945

(f) −4357 and 3754
16. Let a and b be nonzero integers. If there exist integers r and s such that

ar + bs = 1, show that a and b are relatively prime.
17. Fibonacci Numbers. The Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21,

We can define them inductively by f1 = 1, f2 = 1, and fn+2 = fn+1 + fn
for n ∈ N.

(a) Prove that fn < 2n.

(b) Prove that fn+1fn−1 = f2
n + (−1)n, n ≥ 2.

(c) Prove that fn = [(1 +
√
5)n − (1−

√
5)n]/2n

√
5.

(d) Show that limn→∞ fn/fn+1 = (
√
5− 1)/2.

(e) Prove that fn and fn+1 are relatively prime.

Hint. For Item 2.4.17.a and Item 2.4.17.b use mathematical induc-
tion. Item 2.4.17.c Show that f1 = 1, f2 = 1, and fn+2 = fn+1 + fn.
Item 2.4.17.d Use part Item 2.4.17.c. Item 2.4.17.e Use part Item 2.4.17.b
and Exercise 2.4.16.

18. Let a and b be integers such that gcd(a, b) = 1. Let r and s be integers
such that ar + bs = 1. Prove that

gcd(a, s) = gcd(r, b) = gcd(r, s) = 1.

CHAPTER 2. THE INTEGERS 38

19. Let x, y ∈ N be relatively prime. If xy is a perfect square, prove that x
and y must both be perfect squares.
Hint. Use the Fundamental Theorem of Arithmetic.

20. Using the division algorithm, show that every perfect square is of the
form 4k or 4k + 1 for some nonnegative integer k.

21. Suppose that a, b, r, s are pairwise relatively prime and that

a2 + b2 = r2

a2 − b2 = s2.

Prove that a, r, and s are odd and b is even.
22. Let n ∈ N. Use the division algorithm to prove that every integer is

congruent mod n to precisely one of the integers 0, 1, . . . , n− 1. Conclude
that if r is an integer, then there is exactly one s in Z such that 0 ≤ s < n
and [r] = [s]. Hence, the integers are indeed partitioned by congruence
mod n.

23. Define the least common multiple of two nonzero integers a and b,
denoted by lcm(a, b), to be the nonnegative integer m such that both a
and b divide m, and if a and b divide any other integer n, then m also
divides n. Prove that any two integers a and b have a unique least common
multiple.
Hint. Let S = {s ∈ N : a | s, b | s}. Then S 6= ∅, since |ab| ∈ S. By
the Principle of Well-Ordering, S contains a least element m. To show
uniqueness, suppose that a | n and b | n for some n ∈ N. By the division
algorithm, there exist unique integers q and r such that n = mq+r, where
0 ≤ r < m. Since a and b divide both m, and n, it must be the case that
a and b both divide r. Thus, r = 0 by the minimality of m. Therefore,
m | n.

24. If d = gcd(a, b) and m = lcm(a, b), prove that dm = |ab|.
25. Show that lcm(a, b) = ab if and only if gcd(a, b) = 1.
26. Prove that gcd(a, c) = gcd(b, c) = 1 if and only if gcd(ab, c) = 1 for

integers a, b, and c.
27. Let a, b, c ∈ Z. Prove that if gcd(a, b) = 1 and a | bc, then a | c.

Hint. Since gcd(a, b) = 1, there exist integers r and s such that ar+bs =
1. Thus, acr + bcs = c. Since a divides both bc and itself, a must divide
c.

28. Let p ≥ 2. Prove that if 2p − 1 is prime, then p must also be prime.
29. Prove that there are an infinite number of primes of the form 6n+ 5.

Hint. Every prime must be of the form 2, 3, 6n+1, or 6n+5. Suppose
there are only finitely many primes of the form 6k + 5.

30. Prove that there are an infinite number of primes of the form 4n− 1.
31. Using the fact that 2 is prime, show that there do not exist integers p

and q such that p2 = 2q2. Demonstrate that therefore
√
2 cannot be a

rational number.

CHAPTER 2. THE INTEGERS 39

2.5 Programming Exercises
1. The Sieve of Eratosthenes. One method of computing all of the prime

numbers less than a certain fixed positive integer N is to list all of the
numbers n such that 1 < n < N . Begin by eliminating all of the multiples
of 2. Next eliminate all of the multiples of 3. Now eliminate all of the
multiples of 5. Notice that 4 has already been crossed out. Continue in
this manner, noticing that we do not have to go all the way to N ; it suffices
to stop at

√
N . Using this method, compute all of the prime numbers less

than N = 250. We can also use this method to find all of the integers that
are relatively prime to an integer N . Simply eliminate the prime factors
of N and all of their multiples. Using this method, find all of the numbers
that are relatively prime to N = 120. Using the Sieve of Eratosthenes,
write a program that will compute all of the primes less than an integer
N .

2. Let N0 = N∪{0}. Ackermann’s function is the function A : N0×N0 → N0

defined by the equations

A(0, y) = y + 1

A(x+ 1, 0) = A(x, 1)

A(x+ 1, y + 1) = A(x,A(x+ 1, y)).

Use this definition to compute A(3, 1). Write a program to evaluate
Ackermann’s function. Modify the program to count the number of state-
ments executed in the program when Ackermann’s function is evaluated.
How many statements are executed in the evaluation of A(4, 1)? What
about A(5, 1)?

3. Write a computer program that will implement the Euclidean algorithm.
The program should accept two positive integers a and b as input and
should output gcd(a, b) as well as integers r and s such that

gcd(a, b) = ra+ sb.

2.6 Sage Exercises
These exercises are about investigating basic properties of the integers, some-
thing we will frequently do when investigating groups. Use the editing capa-
bilities of a Sage worksheet to annotate and explain your work.

1. Use the next_prime() command to construct two different 8-digit prime
numbers and save them in variables named a and b.

2. Use the .is_prime() method to verify that your primes a and b are really
prime.

3. Verify that 1 is the greatest common divisor of your two primes from the
previous exercises.

4. Find two integers that make a “linear combination” of your two primes
equal to 1. Include a verification of your result.

5. Determine a factorization into powers of primes for c = 4598 037 234.
6. Write a compute cell that defines the same value of c again, and then

defines a candidate divisor of c named d. The third line of the cell should
return True if and only if d is a divisor of c. Illustrate the use of your
cell by testing your code with d = 7 and in a new copy of the cell, testing

THE INTEGERS 40

your code with d = 11.

2.7 References and Suggested Readings
[1] Brookshear, J. G. Theory of Computation: Formal Languages, Automata,

and Complexity. Benjamin/Cummings, Redwood City, CA, 1989. Shows
the relationships of the theoretical aspects of computer science to set
theory and the integers.

[2] Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Num-
bers. 6th ed. Oxford University Press, New York, 2008.

[3] Niven, I. and Zuckerman, H. S. An Introduction to the Theory of Numbers.
5th ed. Wiley, New York, 1991.

[4] Vanden Eynden, C. Elementary Number Theory. 2nd ed. Waveland
Press, Long Grove IL, 2001.

Part II

Algebra

41

Chapter 1

Groups
David Farmer

We begin our study of algebraic structures by investigating sets associated with
single operations that satisfy certain reasonable axioms; that is, we want to
define an operation on a set in a way that will generalize such familiar structures
as the integers Z together with the single operation of addition, or invertible
2×2 matrices together with the single operation of matrix multiplication. The
integers and the 2×2 matrices, together with their respective single operations,
are examples of algebraic structures known as groups.1

The theory of groups occupies a central position in mathematics. Modern
group theory arose from an attempt to find the roots of a polynomial in terms
of its coefficients. Groups now play a central role in such areas as coding theory,
counting, and the study of symmetries; many areas of biology, chemistry, and
physics have benefited from group theory.

Alex Jordan helped improve this chapter.

1.1 Integer Equivalence Classes and Symmetries
Carl Friedrich Gauß, Leonhard Euler

Let us now investigate some mathematical structures that can be viewed as
sets with single operations.

1.1.1 The Integers mod n
Gottfried Wilhelm Leibniz

The integers mod n have become indispensable in the theory and applications
of algebra. In mathematics they are used in cryptography, coding theory, and
the detection of errors in identification codes.

We have already seen that two integers a and b are equivalent mod n if n
divides a− b. The integers mod n also partition Z into n different equivalence
classes; we will denote the set of these equivalence classes by Zn. Consider the
integers modulo 12 and the corresponding partition of the integers:

[0] = {. . . ,−12, 0, 12, 24, . . .}
[1] = {. . . ,−11, 1, 13, 25, . . .}

1A test footnote, with no real content.

42

CHAPTER 1. GROUPS 43

...
[11] = {. . . ,−1, 11, 23, 35, . . .}.

When no confusion can arise, we will use 0, 1, . . . , 11 to indicate the equiv-
alence classes [0], [1], . . . , [11] respectively. We can do arithmetic on Zn. For
two integers a and b, define addition modulo n to be (a+ b) (mod n); that is,
the remainder when a+ b is divided by n. Similarly, multiplication modulo n
is defined as (ab) (mod n), the remainder when ab is divided by n.

Example 1.1.1 Modular Addition. The following examples illustrate
integer arithmetic modulo n:

7 + 4 ≡ 1 (mod 5) 7 · 3 ≡ 1 (mod 5)

3 + 5 ≡ 0 (mod 8) 3 · 5 ≡ 7 (mod 8)

3 + 4 ≡ 7 (mod 12) 3 · 4 ≡ 0 (mod 12).

In particular, notice that it is possible that the product of two nonzero
numbers modulo n can be equivalent to 0 modulo n. □
Example 1.1.2 Modular Arithmetic. Most, but not all, of the usual
laws of arithmetic hold for addition and multiplication in Zn. For instance,
it is not necessarily true that there is a multiplicative inverse. Consider the
multiplication table for Z8 in Figure 1.1.3. Notice that 2, 4, and 6 do not have
multiplicative inverses; that is, for n = 2, 4, or 6, there is no integer k such
that kn ≡ 1 (mod 8).

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

Figure 1.1.3 Multiplication table for Z8

□
Proposition 1.1.4 Let Zn be the set of equivalence classes of the integers mod
n and a, b, c ∈ Zn.

1. Addition and multiplication are commutative:

a+ b ≡ b+ a (mod n)

ab ≡ ba (mod n).

2. Addition and multiplication are associative:

(a+ b) + c ≡ a+ (b+ c) (mod n)

(ab)c ≡ a(bc) (mod n).

3. There are both additive and multiplicative identities:

a+ 0 ≡ a (mod n)

a · 1 ≡ a (mod n).

CHAPTER 1. GROUPS 44

4. Multiplication distributes over addition:

a(b+ c) ≡ ab+ ac (mod n).

5. For every integer a there is an additive inverse −a:

a+ (−a) ≡ 0 (mod n).

6. Let a be a nonzero integer. Then gcd(a, n) = 1 if and only if there exists
a multiplicative inverse b for a (mod n); that is, a nonzero integer b such
that

ab ≡ 1 (mod n).

Proof. We will prove (1) and (6) and leave the remaining properties to be
proven in the exercises.
(1) Addition and multiplication are commutative modulo n since the remainder
of a+ b divided by n is the same as the remainder of b+ a divided by n.
(6) Suppose that gcd(a, n) = 1. Then there exist integers r and s such that
ar + ns = 1. Since ns = 1 − ar, it must be the case that ar ≡ 1 (mod n).
Letting b be the equivalence class of r, ab ≡ 1 (mod n).
Conversely, suppose that there exists an integer b such that ab ≡ 1 (mod n).
Then n divides ab − 1, so there is an integer k such that ab − nk = 1. Let
d = gcd(a, n). Since d divides ab− nk, d must also divide 1; hence, d = 1. ■

CHAPTER 1. GROUPS 45

1.1.2 Symmetries

reflection
horizontal axis

A

D

B

C

C

B

D

A

reflection
vertical axis

A

D

B

C

A

D

B

C

180◦

rotation

A

D

B

C

D

A

C

B

identity
A

D

B

C

B

C

A

D

Figure 1.1.5 Rigid motions of a rectangle
A symmetry of a geometric figure is a rearrangement of the figure preserv-

ing the arrangement of its sides and vertices as well as its distances and angles.
A map from the plane to itself preserving the symmetry of an object is called
a rigid motion. For example, if we look at the rectangle in Figure 1.1.5, it is
easy to see that a rotation of 180◦ or 360◦ returns a rectangle in the plane with
the same orientation as the original rectangle and the same relationship among
the vertices. A reflection of the rectangle across either the vertical axis or the
horizontal axis can also be seen to be a symmetry. However, a 90◦ rotation in
either direction cannot be a symmetry unless the rectangle is a square.

CHAPTER 1. GROUPS 46

A

B

C

reflection

B C

A

µ3 =

(
A B C

B A C

)
A

B

C

reflection

C A

B

µ2 =

(
A B C

C B A

)
A

B

C

reflection

A B

C

µ1 =

(
A B C

A C B

)
A

B

C

rotation

B A

C

ρ2 =

(
A B C

C A B

)
A

B

C

rotation

C B

A

ρ1 =

(
A B C

B C A

)
A

B

C

identity

A C

B

id =

(
A B C

A B C

)

Figure 1.1.6 Symmetries of a triangle
Let us find the symmetries of the equilateral triangle 4ABC. To find a

symmetry of 4ABC, we must first examine the permutations of the vertices
A, B, and C and then ask if a permutation extends to a symmetry of the
triangle. Recall that a permutation of a set S is a one-to-one and onto map
π : S → S. The three vertices have 3! = 6 permutations, so the triangle has
at most six symmetries. To see that there are six permutations, observe there
are three different possibilities for the first vertex, and two for the second, and
the remaining vertex is determined by the placement of the first two. So we
have 3 · 2 · 1 = 3! = 6 different arrangements. To denote the permutation of
the vertices of an equilateral triangle that sends A to B, B to C, and C to A,

CHAPTER 1. GROUPS 47

we write the array (
A B C

B C A

)
.

Notice that this particular permutation corresponds to the rigid motion of ro-
tating the triangle by 120◦ in a clockwise direction. In fact, every permutation
gives rise to a symmetry of the triangle. All of these symmetries are shown in
Figure 1.1.6.

A natural question to ask is what happens if one motion of the triangle
4ABC is followed by another. Which symmetry is µ1ρ1; that is, what happens
when we do the permutation ρ1 and then the permutation µ1? Remember that
we are composing functions here. Although we usually multiply left to right, we
compose functions right to left. We have

(µ1ρ1)(A) = µ1(ρ1(A)) = µ1(B) = C

(µ1ρ1)(B) = µ1(ρ1(B)) = µ1(C) = B

(µ1ρ1)(C) = µ1(ρ1(C)) = µ1(A) = A.

This is the same symmetry as µ2. Suppose we do these motions in the
opposite order, ρ1 then µ1. It is easy to determine that this is the same as the
symmetry µ3; hence, ρ1µ1 6= µ1ρ1. A multiplication table for the symmetries
of an equilateral triangle 4ABC is given in Figure 1.1.7.

Notice that in the multiplication table for the symmetries of an equilateral
triangle, for every motion of the triangle α there is another motion β such
that αβ = id; that is, for every motion there is another motion that takes the
triangle back to its original orientation.

◦ id ρ1 ρ2 µ1 µ2 µ3

id id ρ1 ρ2 µ1 µ2 µ3

ρ1 ρ1 ρ2 id µ3 µ1 µ2

ρ2 ρ2 id ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 id ρ1 ρ2
µ2 µ2 µ3 µ1 ρ2 id ρ1
µ3 µ3 µ1 µ2 ρ1 ρ2 id

Figure 1.1.7 Symmetries of an equilateral triangle

1.2 Definitions and Examples

1.2.1 Definition of a Group
The integers mod n and the symmetries of a triangle or a rectangle are examples
of groups. A binary operation or law of composition on a set G is a
function G×G → G that assigns to each pair (a, b) ∈ G×G a unique element
a ◦ b, or ab in G, called the composition of a and b. A group (G, ◦) is a set
G together with a law of composition (a, b) 7→ a ◦ b that satisfies the following
axioms.

• The law of composition is associative. That is,

(a ◦ b) ◦ c = a ◦ (b ◦ c)

for a, b, c ∈ G.

CHAPTER 1. GROUPS 48

• There exists an element e ∈ G, called the identity element, such that
for any element a ∈ G

e ◦ a = a ◦ e = a.

• For each element a ∈ G, there exists an inverse element in G, denoted
by a−1, such that

a ◦ a−1 = a−1 ◦ a = e.

A group G with the property that a ◦ b = b ◦ a for all a, b ∈ G is called
abelian or commutative. Groups not satisfying this property are said to be
nonabelian or noncommutative.

1.2.2 Examples of Groups
Example 1.2.1 Group of All Integers. The integers Z =
{. . . ,−1, 0, 1, 2, . . .} form a group under the operation of addition. The bi-
nary operation on two integers m,n ∈ Z is just their sum. Since the integers
under addition already have a well-established notation, we will use the opera-
tor + instead of ◦; that is, we shall write m+ n instead of m ◦ n. The identity
is 0, and the inverse of n ∈ Z is written as −n instead of n−1. Notice that the
set of integers under addition have the additional property that m+n = n+m
and therefore form an abelian group. □

Most of the time we will write ab instead of a ◦ b; however, if the group
already has a natural operation such as addition in the integers, we will use
that operation. That is, if we are adding two integers, we still write m+n, −n
for the inverse, and 0 for the identity as usual. We also write m− n instead of
m+ (−n).

It is often convenient to describe a group in terms of an addition or multi-
plication table. Such a table is called a Cayley table.
Example 1.2.2 Group of Integers Modulo 5. The integers mod n form
a group under addition modulo n. Consider Z5, consisting of the equivalence
classes of the integers 0, 1, 2, 3, and 4. We define the group operation on Z5

by modular addition. We write the binary operation on the group additively;
that is, we write m + n. The element 0 is the identity of the group and each
element in Z5 has an inverse. For instance, 2 + 3 = 3 + 2 = 0. Figure 1.2.3 is
a Cayley table for Z5 (Contributed by Robert Beezer). By Proposition 1.1.4,
Zn = {0, 1, . . . , n − 1} is a group under the binary operation of addition mod
n.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Figure 1.2.3 Cayley table for (Z5,+)

□
Example 1.2.4 Multiplication of Integers Modulo 6. Not every set with
a binary operation is a group. For example, if we let modular multiplication be
the binary operation on Zn, then Zn fails to be a group. The element 1 acts as
a group identity since 1 ·k = k ·1 = k for any k ∈ Zn; however, a multiplicative
inverse for 0 does not exist since 0 · k = k · 0 = 0 for every k in Zn. Even if

CHAPTER 1. GROUPS 49

we consider the set Zn \ {0}, we still may not have a group. For instance, let
2 ∈ Z6. Then 2 has no multiplicative inverse since

0 · 2 = 0 1 · 2 = 2

2 · 2 = 4 3 · 2 = 0

4 · 2 = 2 5 · 2 = 4.

By Proposition 1.1.4, every nonzero k does have an inverse in Zn if k is
relatively prime to n. Denote the set of all such nonzero elements in Zn by
U(n). Then U(n) is a group called the group of units of Zn. Figure 1.2.5 is
a Cayley table for the group U(8).

· 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

Figure 1.2.5 Multiplication table for U(8)

□
Example 1.2.6 Symmetries of a Triangle is not Abelian. The symme-
tries of an equilateral triangle described in Section 1.1 form a nonabelian group.
As we observed, it is not necessarily true that αβ = βα for two symmetries α
and β. Using Figure 1.1.7, which is a Cayley table for this group, we can easily
check that the symmetries of an equilateral triangle are indeed a group. We
will denote this group by either S3 or D3, for reasons that will be explained
later. □
Example 1.2.7 Matrix Multiplication of 2 × 2 Matrices is a Group.
We use M2(R) to denote the set of all 2×2 matrices. Let GL2(R) be the subset
of M2(R) consisting of invertible matrices; that is, a matrix

A =

(
a b

c d

)
is in GL2(R) if there exists a matrix A−1 such that AA−1 = A−1A = I, where
I is the 2×2 identity matrix. For A to have an inverse is equivalent to requiring
that the determinant of A be nonzero; that is, detA = ad − bc 6= 0. The set
of invertible matrices forms a group called the general linear group. The
identity of the group is the identity matrix

I =

(
1 0

0 1

)
.

The inverse of A ∈ GL2(R) is

A−1 =
1

ad− bc

(
d −b

−c a

)
.

The product of two invertible matrices is again invertible. Matrix multiplica-
tion is associative, satisfying the other group axiom. For matrices it is not true
in general that AB = BA; hence, GL2(R) is another example of a nonabelian
group. □

CHAPTER 1. GROUPS 50

Example 1.2.8 Group of Quaternions. Let

1 =

(
1 0

0 1

)
I =

(
0 1

−1 0

)
J =

(
0 i

i 0

)
K =

(
i 0

0 −i

)
,

where i2 = −1. Then the relations I2 = J2 = K2 = −1, IJ = K, JK =
I, KI = J , JI = −K, KJ = −I, and IK = −J hold. The set Q8 =
{±1,±I,±J,±K} is a group called the quaternion group. Notice that Q8

is noncommutative. □
Example 1.2.9 Group of Nonzero Complex Numbers. Let C∗be the set
of nonzero complex numbers. Under the operation of multiplication C∗ forms
a group. The identity is 1. If z = a+ bi is a nonzero complex number, then

z−1 =
a− bi

a2 + b2

is the inverse of z. It is easy to see that the remaining group axioms hold. □
A group is finite, or has finite order, if it contains a finite number of

elements; otherwise, the group is said to be infinite or to have infinite order.
The order of a finite group is the number of elements that it contains. If G
is a group containing n elements, we write |G| = n. The group Z5 is a finite
group of order 5; the integers Z form an infinite group under addition, and we
sometimes write |Z| = ∞.

1.2.3 Basic Properties of Groups
Proposition 1.2.10 The identity element in a group G is unique; that is, there
exists only one element e ∈ G such that eg = ge = g for all g ∈ G.

Proof. Suppose that e and e′ are both identities in G. Then eg = ge = g and
e′g = ge′ = g for all g ∈ G. We need to show that e = e′. If we think of e as
the identity, then ee′ = e′; but if e′ is the identity, then ee′ = e. Combining
these two equations, we have e = ee′ = e′. (David Farmer helped with this
proof.) ■

Inverses in a group are also unique. If g′ and g′′ are both inverses of an
element g in a group G, then gg′ = g′g = e and gg′′ = g′′g = e. We want
to show that g′ = g′′, but g′ = g′e = g′(gg′′) = (g′g)g′′ = eg′′ = g′′. We
summarize this fact in the following proposition.
Proposition 1.2.11 If g is any element in a group G, then the inverse of g,
denoted by g−1, is unique.

Proposition 1.2.12 Let G be a group. If a, b ∈ G, then (ab)−1 = b−1a−1.

Proof. Let a, b ∈ G. Then abb−1a−1 = aea−1 = aa−1 = e. Similarly,
b−1a−1ab = e. But by the previous proposition, inverses are unique; hence,
(ab)−1 = b−1a−1. ■

Proposition 1.2.13 Let G be a group. For any a ∈ G, (a−1)−1 = a.

Proof. Observe that a−1(a−1)−1 = e. Consequently, multiplying both sides of
this equation by a, we have

(a−1)−1 = e(a−1)−1 = aa−1(a−1)−1 = ae = a.

■

CHAPTER 1. GROUPS 51

It makes sense to write equations with group elements and group operations.
If a and b are two elements in a group G, does there exist an element x ∈ G such
that ax = b? If such an x does exist, is it unique? The following proposition
answers both of these questions positively.
Proposition 1.2.14 Let G be a group and a and b be any two elements in G.
Then the equations ax = b and xa = b have unique solutions in G.

Proof. Suppose that ax = b. We must show that such an x exists. Multiplying
both sides of ax = b by a−1, we have x = ex = a−1ax = a−1b.
To show uniqueness, suppose that x1 and x2 are both solutions of ax = b; then
ax1 = b = ax2. So x1 = a−1ax1 = a−1ax2 = x2. The proof for the existence
and uniqueness of the solution of xa = b is similar. ■
Proposition 1.2.15 If G is a group and a, b, c ∈ G, then ba = ca implies b = c
and ab = ac implies b = c.

This proposition tells us that the right and left cancellation laws are
true in groups. We leave the proof as an exercise.

We can use exponential notation for groups just as we do in ordinary algebra.
If G is a group and g ∈ G, then we define g0 = e. For n ∈ N, we define

gn = g · g · · · g︸ ︷︷ ︸
n times

and
g−n = g−1 · g−1 · · · g−1︸ ︷︷ ︸

n times

.

Theorem 1.2.16 In a group, the usual laws of exponents hold; that is, for all
g, h ∈ G,

1. gmgn = gm+n for all m,n ∈ Z;

2. (gm)n = gmn for all m,n ∈ Z;

3. (gh)n = (h−1g−1)−n for all n ∈ Z. Furthermore, if G is abelian, then
(gh)n = gnhn.

We will leave the proof of this theorem as an exercise. Notice that (gh)n 6=
gnhn in general, since the group may not be abelian. If the group is Z or
Zn, we write the group operation additively and the exponential operation
multiplicatively; that is, we write ng instead of gn. The laws of exponents now
become

1. mg + ng = (m+ n)g for all m,n ∈ Z;

2. m(ng) = (mn)g for all m,n ∈ Z;

3. m(g + h) = mg +mh for all n ∈ Z.

It is important to realize that the last statement can be made only because
Z and Zn are commutative groups.

1.2.4 Historical Note
Although the first clear axiomatic definition of a group was not given until the
late 1800s, group-theoretic methods had been employed before this time in the
development of many areas of mathematics, including geometry and the theory
of algebraic equations.

CHAPTER 1. GROUPS 52

Joseph-Louis Lagrange used group-theoretic methods in a 1770–1771 mem-
oir to study methods of solving polynomial equations. Later, Évariste Galois
(1811–1832) succeeded in developing the mathematics necessary to determine
exactly which polynomial equations could be solved in terms of the polyno-
mial’s coefficients. Galois’ primary tool was group theory.

The study of geometry was revolutionized in 1872 when Felix Klein pro-
posed that geometric spaces should be studied by examining those properties
that are invariant under a transformation of the space. Sophus Lie, a contem-
porary of Klein, used group theory to study solutions of partial differential
equations. One of the first modern treatments of group theory appeared in
William Burnside’s The Theory of Groups of Finite Order [1], first published
in 1897.

1.3 Subgroups

1.3.1 Definitions and Examples
Sometimes we wish to investigate smaller groups sitting inside a larger group.
The set of even integers 2Z = {. . . ,−2, 0, 2, 4, . . .} is a group under the op-
eration of addition. This smaller group sits naturally inside of the group of
integers under addition. We define a subgroup H of a group G to be a subset
H of G such that when the group operation of G is restricted to H, H is a
group in its own right. Observe that every group G with at least two elements
will always have at least two subgroups, the subgroup consisting of the iden-
tity element alone and the entire group itself. The subgroup H = {e} of a
group G is called the trivial subgroup. A subgroup that is a proper subset
of G is called a proper subgroup. In many of the examples that we have
investigated up to this point, there exist other subgroups besides the trivial
and improper subgroups.
Example 1.3.1 A Subgroup of the Reals. Consider the set of nonzero
real numbers, R∗, with the group operation of multiplication. The identity of
this group is 1 and the inverse of any element a ∈ R∗ is just 1/a. We will show
that

Q∗ = {p/q : p and q are nonzero integers}

is a subgroup of R∗. The identity of R∗ is 1; however, 1 = 1/1 is the quotient
of two nonzero integers. Hence, the identity of R∗ is in Q∗. Given two elements
in Q∗, say p/q and r/s, their product pr/qs is also in Q∗. The inverse of any
element p/q ∈ Q∗ is again in Q∗ since (p/q)−1 = q/p. Since multiplication in
R∗ is associative, multiplication in Q∗ is associative. □
Example 1.3.2 A Subgroup of the Nonzero Complex Numbers. Recall
that C∗ is the multiplicative group of nonzero complex numbers. Let H =
{1,−1, i,−i}. Then H is a subgroup of C∗. It is quite easy to verify that H is
a group under multiplication and that H ⊂ C∗. □
Example 1.3.3 A Subgroup of Matrices With Determinant One. Let
SL2(R) be the subset of GL2(R)consisting of matrices of determinant one; that
is, a matrix

A =

(
a b

c d

)
is in SL2(R) exactly when ad − bc = 1. To show that SL2(R) is a subgroup
of the general linear group, we must show that it is a group under matrix
multiplication. The 2× 2 identity matrix is in SL2(R), as is the inverse of the

CHAPTER 1. GROUPS 53

matrix A:
A−1 =

(
d −b

−c a

)
.

It remains to show that multiplication is closed; that is, that the product of
two matrices of determinant one also has determinant one. We will leave this
task as an exercise. The group SL2(R) is called the special linear group. □
Example 1.3.4 Groups, Subsets, Operations. It is important to realize
that a subset H of a group G can be a group without being a subgroup of G.
For H to be a subgroup of G it must inherit G’s binary operation. The set of
all 2× 2 matrices, M2(R), forms a group under the operation of addition. The
2 × 2 general linear group is a subset of M2(R) and is a group under matrix
multiplication, but it is not a subgroup of M2(R). If we add two invertible
matrices, we do not necessarily obtain another invertible matrix. Observe that(

1 0

0 1

)
+

(
−1 0

0 −1

)
=

(
0 0

0 0

)
,

but the zero matrix is not in GL2(R). □
Example 1.3.5 Structurally Different Groups. One way of telling
whether or not two groups are the same is by examining their subgroups. Other
than the trivial subgroup and the group itself, the group Z4 has a single sub-
group consisting of the elements 0 and 2. From the group Z2, we can form
another group of four elements as follows. As a set this group is Z2 × Z2. We
perform the group operation coordinatewise; that is, (a, b)+(c, d) = (a+c, b+d).
Figure 1.3.6 is an addition table for Z2 × Z2. Since there are three nontrivial
proper subgroups of Z2 × Z2, H1 = {(0, 0), (0, 1)}, H2 = {(0, 0), (1, 0)}, and
H3 = {(0, 0), (1, 1)}, Z4 and Z2 × Z2 must be different groups.

+ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)

(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)

(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

Figure 1.3.6 Addition table for Z2 × Z2

□

1.3.2 Some Subgroup Theorems
Let us examine some criteria for determining exactly when a subset of a group
is a subgroup.
Proposition 1.3.7 A subset H of G is a subgroup if and only if it satisfies
the following conditions.

1. The identity e of G is in H.

2. If h1, h2 ∈ H, then h1h2 ∈ H.

3. If h ∈ H, then h−1 ∈ H.

Proof. First suppose that H is a subgroup of G. We must show that the three
conditions hold. Since H is a group, it must have an identity eH . We must
show that eH = e, where e is the identity of G. We know that eHeH = eH

CHAPTER 1. GROUPS 54

and that eeH = eHe = eH ; hence, eeH = eHeH . By right-hand cancellation,
e = eH . The second condition holds since a subgroup H is a group. To prove
the third condition, let h ∈ H. Since H is a group, there is an element h′ ∈ H
such that hh′ = h′h = e. By the uniqueness of the inverse in G, h′ = h−1.
Conversely, if the three conditions hold, we must show that H is a group under
the same operation as G; however, these conditions plus the associativity of
the binary operation are exactly the axioms stated in the definition of a group.

■
Proposition 1.3.8 Let H be a subset of a group G. Then H is a subgroup of
G if and only if H 6= ∅, and whenever g, h ∈ H then gh−1 is in H.

Proof. First assume that H is a subgroup of G. We wish to show that gh−1 ∈ H
whenever g and h are in H. Since h is in H, its inverse h−1 must also be in H.
Because of the closure of the group operation, gh−1 ∈ H.
Conversely, suppose that H ⊂ G such that H 6= ∅ and gh−1 ∈ H whenever
g, h ∈ H. If g ∈ H, then gg−1 = e is in H. If g ∈ H, then eg−1 = g−1 is
also in H. Now let h1, h2 ∈ H. We must show that their product is also in H.
However, h1(h

−1
2)−1 = h1h2 ∈ H. Hence, H is a subgroup of G. ■

Remark 1.3.9 Sage. The first half of this text is about group theory. Sage
includes Groups, Algorithms and Programming (GAP), a program designed pri-
marly for just group theory, and in continuous development since 1986. Many
of Sage’s computations for groups ultimately are performed by GAP.

1.4 Sage
Many of the groups discussed in this chapter are available for study in Sage. It
is important to understand that sets that form algebraic objects (groups in this
chapter) are called “parents” in Sage, and elements of these objects are called,
well, “elements.” So every element belongs to a parent (in other words, is
contained in some set). We can ask about properties of parents (finite? order?
abelian?), and we can ask about properties of individual elements (identity?
inverse?). In the following we will show you how to create some of these
common groups and begin to explore their properties with Sage.

1.4.1 Integers mod n

Z8 = Integers (8)
Z8

Ring of integers modulo 8

Z8.list()

[0, 1, 2, 3, 4, 5, 6, 7]

a = Z8.an_element (); a

0

a.parent ()

CHAPTER 1. GROUPS 55

Ring of integers modulo 8

We would like to work with elements of Z8. If you were to type a 6 into
a compute cell right now, what would you mean? The integer 6, the rational
number 6

1 , the real number 6.00000, or the complex number 6.00000+0.00000i?
Or perhaps you really do want the integer 6 mod 8? Sage really has no idea
what you mean or want. To make this clear, you can “coerce” 6 into Z8 with
the syntax Z8(6). Without this, Sage will treat a input number like 6 as an
integer, the simplest possible interpretation in some sense. Study the following
carefully, where we first work with “normal” integers and then with integers
mod 8.

a = 6
a

6

a.parent ()

Integer Ring

b = 7
c = a + b; c

13

d = Z8(6)
d

6

d.parent ()

Ring of integers modulo 8

e = Z8(7)
f = d+e; f

5

g = Z8(85); g

5

f == g

True

Z8 is a bit unusual as a first example, since it has two operations defined,
both addition and multiplication, with addition forming a group, and multipli-
cation not forming a group. Still, we can work with the additive portion, here
forming the Cayley table for the addition.

CHAPTER 1. GROUPS 56

Z8.addition_table(names= ' elements ')

+ 0 1 2 3 4 5 6 7
+----------------

0| 0 1 2 3 4 5 6 7
1| 1 2 3 4 5 6 7 0
2| 2 3 4 5 6 7 0 1
3| 3 4 5 6 7 0 1 2
4| 4 5 6 7 0 1 2 3
5| 5 6 7 0 1 2 3 4
6| 6 7 0 1 2 3 4 5
7| 7 0 1 2 3 4 5 6

When n is a prime number, the multipicative structure (excluding zero),
will also form a group.

The integers mod n are very important, so Sage implements both addition
and multiplication together. Groups of symmetries are a better example of
how Sage implements groups, since there is just one operation present.

1.4.2 Groups of symmetries
The symmetries of some geometric shapes are already defined in Sage, albeit
with different names. They are implemented as “permutation groups” which
we will begin to study carefully in Chapter 5.

Sage uses integers to label vertices, starting the count at 1, instead of let-
ters. Elements by default are printed using “cycle notation” which we will see
described carefully in Chapter 5. Here is an example, with both the mathe-
matics and Sage. For the Sage part, we create the group of symmetries and
then create the symmetry ρ2 with coercion, followed by outputting the element
in cycle notation. Then we create just the bottom row of the notation we are
using for permutations.

ρ2 =

(
A B C

C A B

)
=

(
1 2 3

3 1 2

)

triangle = SymmetricGroup (3)
rho2 = triangle ([3 ,1,2])
rho2

(1,3,2)

[rho2(x) for x in triangle.domain ()]

[3, 1, 2]

The final list comprehension deserves comment. The .domain() method
gives a lait of the symbols used for the permutation group triangle and then
rho2 is employed with syntax like it is a function (it is a function) to create
the images that would occupy the bottom row.

With a double list comprehension we can list all six elements of the group
in the “bottom row” format. A good exercise would be to pair up each element
with its name as given in Figure 1.1.6.

[[a(x) for x in triangle.domain ()] for a in triangle]

CHAPTER 1. GROUPS 57

[[1, 2, 3], [2, 1, 3], [2, 3, 1], [3, 1, 2], [1, 3, 2], [3,
2, 1]]

Different books, different authors, different software all have different ideas
about the order in which to write multiplication of functions. This textbook
builds on the idea of composition of functions, so that fg is the composition
(fg)(x) = f(g(x)) and it is natural to apply g first. Sage takes the opposite
view and since we write fg, Sage will understand that we want to do f first.
Neither approach is wrong, and neither is necessarily superior, they are just
different and there are good arguments for either one. When you consult other
books that work with permutation groups, you want to first determine which
approach it takes.

The translation here between the text and Sage will be worthwhile practice.
Here we will reprise the discussion at the end of Section 1.1, but reverse the
order on each product to compute Sage-style and exactly mirror what the text
does.

mu1 = triangle ([1,3 ,2])
mu2 = triangle ([3,2 ,1])
mu3 = triangle ([2,1 ,3])
rho1 = triangle ([2 ,3,1])
product = rho1*mu1
product == mu2

True

[product(x) for x in triangle.domain ()]

[3, 2, 1]

rho1*mu1 == mu1*rho1

False

mu1*rho1 == mu3

True

Now that we understand that Sage does multiplication in reverse, we can
compute the Cayley table for this group. Default behavior is to just name
elements of a group as letters, a, b, c, \dots{} in the same order that the
.list() command would produce the elements of the group. But you can also
print the elements in the table as themselves (that uses cycle notation here),
or you can give the elements names. We will use u as shorthand for µ and r
as shorthand for ρ.

triangle.cayley_table ()

* a b c d e f
+------------

a| a b c d e f
b| b a f e d c
c| c e d a f b
d| d f a c b e

CHAPTER 1. GROUPS 58

e| e c b f a d
f| f d e b c a

triangle.cayley_table(names= ' elements ')

* () (1,2) (1,2,3) (1,3,2) (2,3) (1,3)
+--

()| () (1,2) (1,2,3) (1,3,2) (2,3) (1,3)
(1,2)| (1,2) () (1,3) (2,3) (1,3,2) (1,2,3)

(1,2,3)| (1,2,3) (2,3) (1,3,2) () (1,3) (1,2)
(1,3,2)| (1,3,2) (1,3) () (1,2,3) (1,2) (2,3)

(2,3)| (2,3) (1,2,3) (1,2) (1,3) () (1,3,2)
(1,3)| (1,3) (1,3,2) (2,3) (1,2) (1,2,3) ()

triangle.cayley_table(names=[' id ' , ' u1 ' , ' u3 ' , ' r1 ' , ' r2 ' , ' u2 '])

* id u1 u3 r1 r2 u2
+------------------

id| id u1 u3 r1 r2 u2
u1| u1 id u2 r2 r1 u3
u3| u3 r2 r1 id u2 u1
r1| r1 u2 id u3 u1 r2
r2| r2 u3 u1 u2 id r1
u2| u2 r1 r2 u1 u3 id

You should verify that the table above is correct, just like Table 3.2 is
correct. Remember that the convention is to multiply a row label times a
column label, in that order. However, to do a check across the two tables,
you will need to recall the difference in ordering between your textbook and
Sage.

1.4.3 Quaternions
Sage implements the quaternions, but the elements are not matrices, but rather
are permutations. Despite appearances the structure is identical. It should not
matter which version you have in mind (matrices or permutations) if you build
the Cayley table and use the default behavior of using letters to name the
elements. As permutations, or as letters, can you identify −1, I, J and K?

Q = QuaternionGroup ()
[[a(x) for x in Q.domain ()] for a in Q]

[[1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 4, 1, 6, 7, 8, 5],
[5, 8, 7, 6, 3, 2, 1, 4], [3, 4, 1, 2, 7, 8, 5, 6],
[6, 5, 8, 7, 4, 3, 2, 1], [8, 7, 6, 5, 2, 1, 4, 3],
[4, 1, 2, 3, 8, 5, 6, 7], [7, 6, 5, 8, 1, 4, 3, 2]]

Q.cayley_table ()

* a b c d e f g h
+----------------

a| a b c d e f g h
b| b d f g c h a e
c| c e d h g b f a

CHAPTER 1. GROUPS 59

d| d g h a f e b c
e| e h b f d a c g
f| f c g e a d h b
g| g a e b h c d f
h| h f a c b g e d

It should be fairly obvious that a is the identity element of the group (1),
either from its behavior in the table, or from its “bottom row” representation
in the list above. And if you prefer, you can ask Sage.

id = Q.identity ()
[id(x) for x in Q.domain ()]

[1, 2, 3, 4, 5, 6, 7, 8]

Now −1 should have the property that −1·−1 = 1. We see that the identity
element a is on the diagonal of the Cayley table only when we compute c*c.
We can verify this easily, borrowing the third “bottom row” element from the
list above. With this information, once we locate I, we can easily compute −I,
and so on.

minus_one = Q([3, 4, 1, 2, 7, 8, 5, 6])
minus_one*minus_one == Q.identity ()

True

See if you can pair up the letters with all eight elements of the quaternions.
Be a bit careful with your names, the symbol I is used by Sage for the imaginary
number i (which we will use below), but Sage will silently let you redefine it
to be anything you like. Same goes for lower-case i. So call your elements of
the quaternions something like QI, QJ, QK to avoid confusion.

As we begin to work with groups it is instructive to work with the actual
elements. But many properties of groups are totally independent of the or-
der we use for multiplication, or the names or representations we use for the
elements. Here are facts about the quaternions we can compute without any
knowledge of just how the elements are written or multiplied.

Q.is_finite ()

True

Q.order ()

8

Q.is_abelian ()

False

1.4.4 Subgroups
The best techniques for creating subgroups will come in future chapters, but
we can create some groups that are naturally subgroups of other groups.

Elements of the quaternions were represented by certain permutations of
the integers 1 through 8. We can also build the group of all permutations of

CHAPTER 1. GROUPS 60

these eight integers. It gets pretty big, so do not list it unless you want a lot
of output! (I dare you.)

S8 = SymmetricGroup (8)
a = S8.random_element ()
[a(x) for x in S8.domain ()] # random

[5, 2, 6, 4, 1, 8, 3, 7]

As a demonstration of reusing chunks of Sage code, we duplicate the previ-
ous example. But in each case the code lives in an external file, just once. So
if you wanted to use setup code in more than one division, you could put it
in a file and incorporate it similarly. Here we do not test the second instance,
and so do not include expected output either. Typically, you would do this
copy somewhere further away. Note that need to supply a path for the file that
is relative to the location of teh source file containing the <pretext> element,
since the repeated material is source xml.

S8 = SymmetricGroup (8)
a = S8.random_element ()
[a(x) for x in S8.domain ()] # random

S8.order ()

40320

The quaternions, Q, is a subgroup of the full group of all permutations, the
symmetric group S8 or S8, and Sage regards this as a property of Q.

Q.is_subgroup(S8)

True

In Sage the complex numbers are known by the name CC. We can create
a list of the elements in the subgroup described in Example 1.2.9. Then we
can verify that this set is a subgroup by examining the Cayley table, using
multiplication as the operation.

H = [CC(1), CC(-1), CC(I), CC(-I)]
CC.multiplication_table(elements=H,

names=[' 1 ' , ' -1 ' , ' i ' , ' -i '])

* 1 -1 i -i
+------------

1| 1 -1 i -i
-1| -1 1 -i i
i| i -i -1 1

-i| -i i 1 -1

1.5 Exercises
1. Find all x ∈ Z satisfying each of the following equations.

CHAPTER 1. GROUPS 61

(a) 3x ≡ 2 (mod 7)

(b) 5x+ 1 ≡ 13 (mod 23)

(c) 5x+ 1 ≡ 13 (mod 26)

(d) 9x ≡ 3 (mod 5)

(e) 5x ≡ 1 (mod 6)

(f) 3x ≡ 1 (mod 6)

Hint. (a) 3 + 7Z = {. . . ,−4, 3, 10, . . .}; (c) 18 + 26Z; (e) 5 + 6Z.
2. Which of the following multiplication tables defined on the set G =

{a, b, c, d} form a group? Support your answer in each case.

(a)
◦ a b c d

a a c d a

b b b c d

c c d a b

d d a b c

(b)
◦ a b c d

a a b c d

b b a d c

c c d a b

d d c b a

(c)
◦ a b c d

a a b c d

b b c d a

c c d a b

d d a b c

(d)
◦ a b c d

a a b c d

b b a c d

c c b a d

d d d b c

Hint. (a) Not a group; (c) a group.
3. Write out Cayley tables for groups formed by the symmetries of a rect-

angle and for (Z4,+). How many elements are in each group? Are the
groups the same? Why or why not?

4. Describe the symmetries of a rhombus and prove that the set of sym-
metries forms a group. Give Cayley tables for both the symmetries of
a rectangle and the symmetries of a rhombus. Are the symmetries of a
rectangle and those of a rhombus the same?

5. Describe the symmetries of a square and prove that the set of symmetries
is a group. Give a Cayley table for the symmetries. How many ways can
the vertices of a square be permuted? Is each permutation necessarily a
symmetry of the square? The symmetry group of the square is denoted
by D4.

6. Give a multiplication table for the group U(12).
Hint.

· 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

7. Let S = R\{−1} and define a binary operation on S by a∗b = a+b+ab.
Prove that (S, ∗) is an abelian group.

8. Give an example of two elements A and B in GL2(R) with AB 6= BA.
Hint. Pick two matrices. Almost any pair will work.

9. Prove that the product of two matrices in SL2(R) has determinant one.

CHAPTER 1. GROUPS 62

10. Prove that the set of matrices of the form1 x y

0 1 z

0 0 1

is a group under matrix multiplication. This group, known as the Heisen-
berg group, is important in quantum physics. Matrix multiplication in
the Heisenberg group is defined by1 x y

0 1 z

0 0 1

1 x′ y′

0 1 z′

0 0 1

 =

1 x+ x′ y + y′ + xz′

0 1 z + z′

0 0 1

 .

11. Prove that det(AB) = det(A) det(B) in GL2(R). Use this result to show
that the binary operation in the group GL2(R) is closed; that is, if A and
B are in GL2(R), then AB ∈ GL2(R).

12. Let Zn
2 = {(a1, a2, . . . , an) : ai ∈ Z2}. Define a binary operation on Zn

2

by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn).

Prove that Zn
2 is a group under this operation. This group is important

in algebraic coding theory.
13. Show that R∗ = R \ {0} is a group under the operation of multiplication.
14. Given the groups R∗ and Z, let G = R∗ ×Z. Define a binary operation ◦

on G by (a,m) ◦ (b, n) = (ab,m+ n). Show that G is a group under this
operation.

15. Prove or disprove that every group containing six elements is abelian.
Hint. There is a nonabelian group containing six elements.

16. Give a specific example of some group G and elements g, h ∈ G where
(gh)n 6= gnhn.
Hint. Look at the symmetry group of an equilateral triangle or a square.

17. Give an example of three different groups with eight elements. Why are
the groups different?
Hint. The are five different groups of order 8.

18. Show that there are n! permutations of a set containing n items.
Hint. Let

σ =

(
1 2 · · · n

a1 a2 · · · an

)
be in Sn. All of the ais must be distinct. There are n ways to choose a1,
n− 1 ways to choose a2, . . ., 2 ways to choose an−1, and only one way to
choose an. Therefore, we can form σ in n(n− 1) · · · 2 · 1 = n! ways.

19. Show that
0 + a ≡ a+ 0 ≡ a (mod n)

for all a ∈ Zn.
20. Prove that there is a multiplicative identity for the integers modulo n:

a · 1 ≡ a (mod n).

CHAPTER 1. GROUPS 63

21. For each a ∈ Zn find an element b ∈ Zn such that

a+ b ≡ b+ a ≡ 0 (mod n).

22. Show that addition and multiplication mod n are well defined opera-
tions. That is, show that the operations do not depend on the choice of
the representative from the equivalence classes mod n.

23. Show that addition and multiplication mod n are associative operations.
24. Show that multiplication distributes over addition modulo n:

a(b+ c) ≡ ab+ ac (mod n).

25. Let a and b be elements in a group G. Prove that abna−1 = (aba−1)n for
n ∈ Z.
Hint.

(aba−1)n = (aba−1)(aba−1) · · · (aba−1)

= ab(aa−1)b(aa−1)b · · · b(aa−1)ba−1

= abna−1.

26. Let U(n) be the group of units in Zn. If n > 2, prove that there is an
element k ∈ U(n) such that k2 = 1 and k 6= 1.

27. Prove that the inverse of g1g2 · · · gn is g−1
n g−1

n−1 · · · g
−1
1 .

28. Prove the remainder of Proposition 1.2.14: if G is a group and a, b ∈ G,
then the equation xa = b has a unique solution in G.

29. Prove Theorem 1.2.16.
30. Prove the right and left cancellation laws for a group G; that is, show

that in the group G, ba = ca implies b = c and ab = ac implies b = c for
elements a, b, c ∈ G.

31. Show that if a2 = e for all elements a in a group G, then G must be
abelian.
Hint. Since abab = (ab)2 = e = a2b2 = aabb, we know that ba = ab.

32. Show that if G is a finite group of even order, then there is an a ∈ G
such that a is not the identity and a2 = e.

33. Let G be a group and suppose that (ab)2 = a2b2 for all a and b in G.
Prove that G is an abelian group.

34. Find all the subgroups of Z3 × Z3. Use this information to show that
Z3 × Z3 is not the same group as Z9. (See Example 1.3.5 for a short
description of the product of groups.)

35. Find all the subgroups of the symmetry group of an equilateral triangle.
Hint. H1 = {id}, H2 = {id, ρ1, ρ2}, H3 = {id, µ1}, H4 = {id, µ2},
H5 = {id, µ3}, S3.

36. Compute the subgroups of the symmetry group of a square.
37. Let H = {2k : k ∈ Z}. Show that H is a subgroup of Q∗.
38. Let n = 0, 1, 2, . . . and nZ = {nk : k ∈ Z}. Prove that nZ is a subgroup

of Z. Show that these subgroups are the only subgroups of Z.
39. Let T = {z ∈ C∗ : |z| = 1}. Prove that T is a subgroup of C∗.
40. (

cos θ − sin θ

sin θ cos θ

)

CHAPTER 1. GROUPS 64

where θ ∈ R. Prove that G is a subgroup of SL2(R).
41. Prove that

G = {a+ b
√
2 : a, b ∈ Q and a and b are not both zero}

is a subgroup of R∗ under the group operation of multiplication.
Hint. The identity of G is 1 = 1 + 0

√
2. Since (a + b

√
2)(c + d

√
2) =

(ac + 2bd) + (ad + bc)
√
2, G is closed under multiplication. Finally, (a +

b
√
2)−1 = a/(a2 − 2b2)− b

√
2/(a2 − 2b2).

42. Let G be the group of 2× 2 matrices under addition and

H =

{(
a b

c d

)
: a+ d = 0

}
.

Prove that H is a subgroup of G.
43. Prove or disprove: SL2(Z), the set of 2× 2 matrices with integer entries

and determinant one, is a subgroup of SL2(R).
44. List the subgroups of the quaternion group, Q8.
45. Prove that the intersection of two subgroups of a group G is also a

subgroup of G.
46. Prove or disprove: If H and K are subgroups of a group G, then H ∪K

is a subgroup of G.
Hint. Look at S3.

47. Prove or disprove: If H and K are subgroups of a group G, then HK =
{hk : h ∈ H and k ∈ K} is a subgroup of G. What if G is abelian?

48. Let G be a group and g ∈ G. Show that

Z(G) = {x ∈ G : gx = xg for all g ∈ G}

is a subgroup of G. This subgroup is called the center of G.
49. Let a and b be elements of a group G. If a4b = ba and a3 = e, prove that

ab = ba.
Hint. Since a4b = ba, it must be the case that b = a6b = a2ba, and we
can conclude that ab = a3ba = ba.

50. Give an example of an infinite group in which every nontrivial subgroup
is infinite.

51. If xy = x−1y−1 for all x and y in G, prove that G must be abelian.
52. Prove or disprove: Every proper subgroup of an nonabelian group is

nonabelian.
53. Let H be a subgroup of G and

C(H) = {g ∈ G : gh = hg for all h ∈ H}.

Prove C(H) is a subgroup of G. This subgroup is called the centralizer
of H in G.

54. Let H be a subgroup of G. If g ∈ G, show that gHg−1 = {g−1hg : h ∈ H}
is also a subgroup of G.

Exercise Group. In each group, how many solutions are there to x2 = e?
55. Cn, n odd.

Answer. 1

56. Cn, n even.
Answer. 2

CHAPTER 1. GROUPS 65

57. Dn, n odd.
Answer. n

58. Dn, n even.
Answer. n+ 1

59. This is an odd-numbered exercise with tasks.

(a) What is 1 + 1?

Answer. 2

(b) This task has subtasks.

(i) What is 3 + 3?
Answer. 6

(ii) What is 5 + 5?
Answer. 10

60. This is an even-numbered exercise with tasks.

(a) What is 2 + 2?

Answer. 4

(b) This task has subtasks.

(i) What is 4 + 4?
Answer. 8

(ii) What is 6 + 6?
Answer. 12

1.6 Additional Exercises: Detecting Errors
1. UPC Symbols. Universal Product Code (UPC) symbols are found on

most products in grocery and retail stores. The UPC symbol is a 12-digit
code identifying the manufacturer of a product and the product itself
(Figure 1.6.1). The first 11 digits contain information about the product;
the twelfth digit is used for error detection. If d1d2 · · · d12 is a valid UPC
number, then

3 · d1 + 1 · d2 + 3 · d3 + · · ·+ 3 · d11 + 1 · d12 ≡ 0 (mod 10).

(a) Show that the UPC number 0-50000-30042-6, which appears in Fig-
ure 1.6.1, is a valid UPC number.

(b) Show that the number 0-50000-30043-6 is not a valid UPC number.

(c) Write a formula to calculate the check digit, d12, in the UPC number.

(d) The UPC error detection scheme can detect most transposition er-
rors; that is, it can determine if two digits have been interchanged.
Show that the transposition error 0-05000-30042-6 is not detected.
Find a transposition error that is detected. Can you find a general
rule for the types of transposition errors that can be detected?

(e) Write a program that will determine whether or not a UPC number
is valid.

CHAPTER 1. GROUPS 66

Figure 1.6.1 A UPC code
2. It is often useful to use an inner product notation for this type of error

detection scheme; hence, we will use the notion

(d1, d2, . . . , dk) · (w1, w2, . . . , wk) ≡ 0 (mod n)

to mean
d1w1 + d2w2 + · · ·+ dkwk ≡ 0 (mod n).

Suppose that (d1, d2, . . . , dk) ·(w1, w2, . . . , wk) ≡ 0 (mod n) is an error
detection scheme for the k-digit identification number d1d2 · · · dk, where
0 ≤ di < n. Prove that all single-digit errors are detected if and only if
gcd(wi, n) = 1 for 1 ≤ i ≤ k.

3. Let (d1, d2, . . . , dk) · (w1, w2, . . . , wk) ≡ 0 (mod n) be an error detection
scheme for the k-digit identification number d1d2 · · · dk, where 0 ≤ di < n.
Prove that all transposition errors of two digits di and dj are detected if
and only if gcd(wi − wj , n) = 1 for i and j between 1 and k.

4. ISBN Codes. Every book has an International Standard Book Number
(ISBN) code. This is a 10-digit code indicating the book’s publisher and
title. The tenth digit is a check digit satisfying

(d1, d2, . . . , d10) · (10, 9, . . . , 1) ≡ 0 (mod 11).

One problem is that d10 might have to be a 10 to make the inner product
zero; in this case, 11 digits would be needed to make this scheme work.
Therefore, the character X is used for the eleventh digit. So ISBN 3-540-
96035-X is a valid ISBN code.

(a) Is ISBN 0-534-91500-0 a valid ISBN code? What about ISBN 0-534-
91700-0 and ISBN 0-534-19500-0?

(b) Does this method detect all single-digit errors? What about all
transposition errors?

(c) How many different ISBN codes are there?

(d) Write a computer program that will calculate the check digit for the
first nine digits of an ISBN code.

(e) A publisher has houses in Germany and the United States. Its
German prefix is 3-540. If its United States prefix will be 0-abc,
find abc such that the rest of the ISBN code will be the same for a
book printed in Germany and in the United States. Under the ISBN
coding method the first digit identifies the language; German is 3
and English is 0. The next group of numbers identifies the publisher,
and the last group identifies the specific book.

CHAPTER 1. GROUPS 67

1.7 Sage Exercises
These exercises are about becoming comfortable working with groups in Sage.

1. Create the groups CyclicPermutationGroup(8) and DihedralGroup(4)
and name these groups C and D, respectively. We will understand these
constructions better shortly, but for now just understand that both objects
you create are actually groups.

2. Check that C and D have the same size by using the .order() method.
Determine which group is abelian, and which is not, by using the
.is_abelian() method.

3. Use the .cayley_table() method to create the Cayley table for each
group.

4. Write a nicely formatted discussion identifying differences between the
two groups that are discernible in properties of their Cayley tables. In
other words, what is {\em different} about these two groups that you can
“see” in the Cayley tables? (In the Sage notebook, a Shift-click on a blue
bar will bring up a mini-word-processor, and you can use use dollar signs
to embed mathematics formatted using TEX syntax.)

5. For C locate the one subgroup of order 4. The group D has three subgroups
of order 4. Select one of the three subgroups of D that has a different
structure than the subgroup you obtained from C.

The .subgroups() method will give you a list of all of the subgroups
to help you get started. A Cayley table will help you tell the difference
between the two subgroups. What properties of these tables did you use
to determine the difference in the structure of the subgroups?

6. The .subgroup(elt_list) method of a group will create the smallest
subgroup containing the specified elements of the group, when given the
elements as a list elt_list. Use this command to discover the shortest list
of elements necessary to recreate the subgroups you found in the previous
exercise. The equality comparison, ==, can be used to test if two subgroups
are equal.

1.8 References and Suggested Readings
[1] Burnside, W. Theory of Groups of Finite Order. 2nd ed. Cambridge

University Press, Cambridge, 1911; Dover, New York, 1953. A classic.
Also available at books.google.com.

[2] Gallian, J. A. and Winters, S. “Modular Arithmetic in the Marketplace,”
The American Mathematical Monthly 95 (1988): 548–51.

[3] Gallian, J. A. Contemporary Abstract Algebra. 7th ed. Brooks/Cole,
Belmont, CA, 2009.

[4] Hall, M. Theory of Groups. 2nd ed. American Mathematical Society,
Providence, 1959.

[5] Kurosh, A. E. The Theory of Groups, vols. I and II. American Mathe-
matical Society, Providence, 1979.

[6] Rotman, J. J. An Introduction to the Theory of Groups. 4th ed. Springer,
New York, 1995.

Chapter 2

Cyclic Groups

The groups Z and Zn, which are among the most familiar and easily understood
groups, are both examples of what are called cyclic groups. In this chapter we
will study the properties of cyclic groups and cyclic subgroups, which play a
fundamental part in the classification of all abelian groups.

2.1 Cyclic groups
Often a subgroup will depend entirely on a single element of the group; that
is, knowing that particular element will allow us to compute any other element
in the subgroup.
Example 2.1.1 An Infinite Cyclic Subgroup, Modular Addition. Sup-
pose that we consider 3 ∈ Z and look at all multiples (both positive and nega-
tive) of 3. As a set, this is

3Z = {. . . ,−3, 0, 3, 6, . . .}.

It is easy to see that 3Z is a subgroup of the integers. This subgroup is
completely determined by the element 3 since we can obtain all of the other
elements of the group by taking multiples of 3. Every element in the subgroup
is “generated” by 3. □
Example 2.1.2 An Infinite Cyclic Subgroup, Multiplication of Ratio-
nal Numbers. If H = {2n : n ∈ Z}, then H is a subgroup of the multiplicative
group of nonzero rational numbers, Q∗. If a = 2m and b = 2n are in H, then
ab−1 = 2m2−n = 2m−n is also in H. By Proposition 1.3.8, H is a subgroup of
Q∗ determined by the element 2. □
Theorem 2.1.3 Let G be a group and a be any element in G. Then the set

〈a〉 = {ak : k ∈ Z}

is a subgroup of G. Furthermore, 〈a〉 is the smallest subgroup of G that
contains~a.
Proof. The identity is in 〈a〉 since a0 = e. If g and h are any two elements in
〈a〉, then by the definition of 〈a〉 we can write g = am and h = an for some
integers m and n. So gh = aman = am+n is again in 〈a〉. Finally, if g = an

in 〈a〉, then the inverse g−1 = a−n is also in 〈a〉. Clearly, any subgroup H of
G containing a must contain all the powers of a by closure; hence, H contains

68

CHAPTER 2. CYCLICITY 69

〈a〉. Therefore, 〈a〉 is the smallest subgroup of G containing a. ■
Remark 2.1.4 If we are using the “+” notation, as in the case of the integers
under addition, we write 〈a〉 = {na : n ∈ Z}.

For a ∈ G, we call 〈a〉 the cyclic subgroup generated by a. If G contains
some element a such that G = 〈a〉, then G is a cyclic group. In this case a
is a generator of G. If a is an element of a group G, we define the order of
a to be the smallest positive integer n such that an = e, and we write |a| = n.
If there is no such integer n, we say that the order of a is infinite and write
|a| = ∞ to denote the order of a.

Example 2.1.5 Generators of a Finite Cyclic Group. Notice that a
cyclic group can have more than a single generator. Both 1 and 5 generate Z6;
hence, Z6 is a cyclic group. Not every element in a cyclic group is necessarily
a generator of the group. The order of 2 ∈ Z6 is 3. The cyclic subgroup
generated by 2 is 〈2〉 = {0, 2, 4}. □

The groups Z and Zn are cyclic groups. The elements 1 and −1 are gener-
ators for Z. We can certainly generate Zn with 1 although there may be other
generators of Zn, as in the case of Z6.

Example 2.1.6 A Cyclic Group of Units. The group of units, U(9), in Z9

is a cyclic group. As a set, U(9) is {1, 2, 4, 5, 7, 8}. The element 2 is a generator
for U(9) since

21 = 2 22 = 4

23 = 8 24 = 7

25 = 5 26 = 1.

□
Example 2.1.7 A Group That is Not Cyclic. Not every group is a
cyclic group. Consider the symmetry group of an equilateral triangle S3. The
subgroups of S3 are shown in Figure 2.1.8. Notice that every subgroup is cyclic;
however, no single element generates the entire group. □

{id, ρ1, ρ2} {id, µ1} {id, µ2} {id, µ3}

S3

{id}
Figure 2.1.8 Subgroups of S3

Theorem 2.1.9 Every cyclic group is abelian.

Proof. Let G be a cyclic group and a ∈ G be a generator for G. If g and h are
in G, then they can be written as powers of a, say g = ar and h = as. Since

gh = aras = ar+s = as+r = asar = hg,

G is abelian. ■

CHAPTER 2. CYCLICITY 70

2.2 Subgroups of a Cyclic Group
We can ask some interesting questions about cyclic subgroups of a group and
subgroups of a cyclic group. If G is a group, which subgroups of G are cyclic?
If G is a cyclic group, what type of subgroups does G possess?
Theorem 2.2.1 Every subgroup of a cyclic group is cyclic.

Proof. The main tools used in this proof are the division algorithm and the
Principle of Well-Ordering. Let G be a cyclic group generated by a and suppose
that H is a subgroup of G. If H = {e}, then trivially H is cyclic. Suppose
that H contains some other element g distinct from the identity. Then g can
be written as an for some integer n. Since H is a subgroup, g−1 = an must
also be in H. Since either n or −n is positive, we can assume that H contains
positive powers of a and n > 0. Let m be the smallest natural number such
that am ∈ H. Such an m exists by the Principle of Well-Ordering.
We claim that h = am is a generator for H. We must show that every h′ ∈ H
can be written as a power of h. Since h′ ∈ H and H is a subgroup of G, h′ = ak

for some integer k. Using the division algorithm, we can find numbers q and r
such that k = mq + r where 0 ≤ r < m; hence,

ak = amq+r = (am)qar = hqar.

So ar = akh−q. Since ak and h−q are in H, ar must also be in H. However, m
was the smallest positive number such that am was in H; consequently, r = 0
and so k = mq. Therefore,

h′ = ak = amq = hq

and H is generated by h. ■
Corollary 2.2.2 The subgroups of Z are exactly nZ for n = 0, 1, 2,
Proposition 2.2.3 Let G be a cyclic group of order n and suppose that a is a
generator for G. Then ak = e if and only if n divides k.

Proof. First suppose that ak = e. By the division algorithm, k = nq+ r where
0 ≤ r < n; hence,

e = ak = anq+r = anqar = ear = ar.

Since the smallest positive integer m such that am = e is n, r = 0.
Conversely, if n divides k, then k = ns for some integer s. Consequently,

ak = ans = (an)s = es = e.

■
Theorem 2.2.4 Let G be a cyclic group of order n and suppose that a ∈ G
is a generator of the group. If b = ak, then the order of b is n/d, where
d = gcd(k, n).

Proof. We wish to find the smallest integer m such that e = bm = akm. By
Proposition 2.2.3, this is the smallest integer m such that n divides km or,
equivalently, n/d divides m(k/d). Since d is the greatest common divisor of n
and k, n/d and k/d are relatively prime. Hence, for n/d to divide m(k/d) it
must divide m. The smallest such m is n/d. ■

CHAPTER 2. CYCLICITY 71

Corollary 2.2.5 The generators of Zn are the integers r such that 1 ≤ r < n
and gcd(r, n) = 1.
Example 2.2.6 A Finite Cyclic Group of Order 16. Let us examine
the group Z16. The numbers 1, 3, 5, 7, 9, 11, 13, and 15 are the elements of
Z16 that are relatively prime to 16. Each of these elements generates Z16. For
example,

1 · 9 = 9 2 · 9 = 2 3 · 9 = 11

4 · 9 = 4 5 · 9 = 13 6 · 9 = 6

7 · 9 = 15 8 · 9 = 8 9 · 9 = 1

10 · 9 = 10 11 · 9 = 3 12 · 9 = 12

13 · 9 = 5 14 · 9 = 14 15 · 9 = 7.

□

2.3 Cyclic Groups of Complex Numbers
The complex numbers are defined as

C = {a+ bi : a, b ∈ R},

where i2 = −1. If z = a + bi, then a is the real part of z and b is the
imaginary part of z.

To add two complex numbers z = a + bi and w = c + di, we just add the
corresponding real and imaginary parts:

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

Remembering that i2 = −1, we multiply complex numbers just like polynomi-
als. The product of z and w is

(a+ bi)(c+ di) = ac+ bdi2 + adi+ bci = (ac− bd) + (ad+ bc)i.

Every nonzero complex number z = a+bi has a multiplicative inverse; that
is, there exists a z−1 ∈ C∗ such that zz−1 = z−1z = 1. If z = a+ bi, then

z−1 =
a− bi

a2 + b2
.

The complex conjugate of a complex number z = a + bi is defined to be
z = a− bi. The absolute value or modulus of z = a+ bi is |z| =

√
a2 + b2.

Example 2.3.1 Complex Number Operations. Let z = 2 + 3i and
w = 1− 2i. Then

z + w = (2 + 3i) + (1− 2i) = 3 + i

and
zw = (2 + 3i)(1− 2i) = 8− i.

Also,

z−1 =
2

13
− 3

13
i

|z| =
√
13

z = 2− 3i.

□

CHAPTER 2. CYCLICITY 72

y

x0

z1 = 2 + 3i

z3 = −3 + 2i

z2 = 1− 2i

Figure 2.3.2 Rectangular coordinates of a complex number
There are several ways of graphically representing complex numbers. We

can represent a complex number z = a+ bi as an ordered pair on the xy plane
where a is the x (or real) coordinate and b is the y (or imaginary) coordinate.
This is called the rectangular or Cartesian representation. The rectangular
representations of z1 = 2 + 3i, z2 = 1 − 2i, and z3 = −3 + 2i are depicted in
Figure 2.3.2.

y

x0

a+ bi

r

θ

Figure 2.3.3 Polar coordinates of a complex number
Nonzero complex numbers can also be represented using polar coordi-

nates. To specify any nonzero point on the plane, it suffices to give an angle
θ from the positive x axis in the counterclockwise direction and a distance r
from the origin, as in Figure 2.3.3. We can see that

z = a+ bi = r(cos θ + i sin θ).

Hence,
r = |z| =

√
a2 + b2

CHAPTER 2. CYCLICITY 73

and

a = r cos θ
b = r sin θ.

We sometimes abbreviate r(cos θ + i sin θ) as r cis θ. To assure that the rep-
resentation of z is well-defined, we also require that 0◦ ≤ θ < 360◦. If the
measurement is in radians, then 0 ≤ θ < 2π.
Example 2.3.4 Complex Numbers in Polar Form. Suppose that z =
2 cis 60◦. Then

a = 2 cos 60◦ = 1

and
b = 2 sin 60◦ =

√
3.

Hence, the rectangular representation is z = 1 +
√
3 i.

Conversely, if we are given a rectangular representation of a complex
number, it is often useful to know the number’s polar representation. If
z = 3

√
2− 3

√
2 i, then

r =
√
a2 + b2 =

√
36 = 6

and
θ = arctan

(
b

a

)
= arctan(−1) = 315◦,

so 3
√
2− 3

√
2 i = 6 cis 315◦. □

The polar representation of a complex number makes it easy to find prod-
ucts and powers of complex numbers. The proof of the following proposition
is straightforward and is left as an exercise.
Proposition 2.3.5 Let z = r cis θ and w = s cisϕ be two nonzero complex
numbers. Then

zw = rs cis(θ + ϕ).
Example 2.3.6 Multiplication of Complex Numbers in Polar Form.
If z = 3 cis(π/3) and w = 2 cis(π/6), then zw = 6 cis(π/2) = 6i. □
Theorem 2.3.7 DeMoivre. Let z = r cis θ be a nonzero complex number.
Then

[r cis θ]n = rn cis(nθ)

for n = 1, 2,

Proof. We will use induction on n (see Section I.2.1). For n = 1 the theorem
is trivial. Assume that the theorem is true for all k such that 1 ≤ k ≤ n. Then

zn+1 = znz

= rn(cosnθ + i sinnθ)r(cos θ + i sin θ)

= rn+1[(cosnθ cos θ − sinnθ sin θ) + i(sinnθ cos θ + cosnθ sin θ)]

= rn+1[cos(nθ + θ) + i sin(nθ + θ)]

= rn+1[cos(n+ 1)θ + i sin(n+ 1)θ].

■
Example 2.3.8 Powers of Complex Numbers. Suppose that z = 1 + i
and we wish to compute z10. Rather than computing (1 + i)10 directly, it is
much easier to switch to polar coordinates and calculate z10 using DeMoivre’s

CHAPTER 2. CYCLICITY 74

Theorem:

z10 = (1 + i)10

=
(√

2 cis
(π
4

))10
= (

√
2)10 cis

(
5π

2

)
= 32 cis

(π
2

)
= 32i.

□
The multiplicative group of the complex numbers, C∗, possesses some inter-

esting subgroups. Whereas Q∗ and R∗ have no interesting subgroups of finite
order, C∗ has many. We first consider the circle group,

T = {z ∈ C : |z| = 1}.
The following proposition is a direct result of Proposition 2.3.5.
Proposition 2.3.9 The circle group is a subgroup of C∗.

Although the circle group has infinite order, it has many interesting finite
subgroups. Suppose that H = {1,−1, i,−i}. Then H is a subgroup of the
circle group. Also, 1, −1, i, and −i are exactly those complex numbers that
satisfy the equation z4 = 1. The complex numbers satisfying the equation
zn = 1 are called the nth roots of unity.
Theorem 2.3.10 If zn = 1, then the nth roots of unity are

z = cis
(
2kπ

n

)
,

where k = 0, 1, . . . , n − 1. Furthermore, the nth roots of unity form a cyclic
subgroup of T of order n

Proof. By DeMoivre’s Theorem,

zn = cis
(
n
2kπ

n

)
= cis(2kπ) = 1.

The z’s are distinct since the numbers 2kπ/n are all distinct and are greater
than or equal to 0 but less than 2π. We will leave the proof that the nth roots
of unity form a cyclic subgroup of T as an exercise. ■

A generator for the group of the nth roots of unity is called a primitive
nth root of unity.
Example 2.3.11 Roots of Unity. The 8th roots of unity can be represented
as eight equally spaced points on the unit circle (Figure 2.3.12). The primitive
8th roots of unity are

ω =

√
2

2
+

√
2

2
i

ω3 = −
√
2

2
+

√
2

2
i

ω5 = −
√
2

2
−

√
2

2
i

ω7 =

√
2

2
−

√
2

2
i.

CHAPTER 2. CYCLICITY 75

□

y

x0 1

ω

i

ω3

−1

ω5

−i

ω7

Figure 2.3.12 8th roots of unity
We interrupt this exposition to repeat the previous diagram, wrapped as

different figure with a different caption. The TikZ code to produce these di-
agrams lives in an external file, tikz/cyclic-roots-unity.tex, which is pure
text, freed from any need to format for XML processing. So, in particular,
there is no need to escape ampersands and angle brackets, nor is there em-
ployment of the CDATA mechanism. But the real value is that there is just one
version to edit, and any changes will be reflected in both copies.

CHAPTER 2. CYCLICITY 76

y

x0 1

ω

i

ω3

−1

ω5

−i

ω7

Figure 2.3.13 Repeat: 8th roots of unity

2.4 Large Powers of Integers
Computing large powers can be very time-consuming. Just as anyone can
compute 22 or 28, everyone knows how to compute

22
1000000

.

However, such numbers are so large that we do not want to attempt the calcu-
lations; moreover, past a certain point the computations would not be feasible
even if we had every computer in the world at our disposal. Even writing
down the decimal representation of a very large number may not be reason-
able. It could be thousands or even millions of digits long. However, if we could
compute something like 237398332 (mod 46389), we could very easily write the
result down since it would be a number between 0 and 46,388. If we want to
compute powers modulo n quickly and efficiently, we will have to be clever.1

The first thing to notice is that any number a can be written as the sum
of distinct powers of 2; that is, we can write

a = 2k1 + 2k2 + · · ·+ 2kn ,

where k1 < k2 < · · · < kn. This is just the binary representation of a. For
example, the binary representation of 57 is 111001, since we can write 57 =
20 + 23 + 24 + 25.

The laws of exponents still work in Zn; that is, if b ≡ ax (mod n) and
c ≡ ay (mod n), then bc ≡ ax+y (mod n). We can compute a2

k

(mod n) in k

1The results in this section are needed only in Chapter I.2 (not really).

CHAPTER 2. CYCLICITY 77

multiplications by computing

a2
0

(mod n)

a2
1

(mod n)

...

a2
k

(mod n).

Each step involves squaring the answer obtained in the previous step, dividing
by n, and taking the remainder.

Example 2.4.1 Repeated Squares. We will compute 271321 (mod 481).
Notice that

321 = 20 + 26 + 28;

hence, computing 271321 (mod 481) is the same as computing

2712
0+26+28 ≡ 2712

0

· 2712
6

· 2712
8

(mod 481).

So it will suffice to compute 2712
i

(mod 481) where i = 0, 6, 8. It is very easy
to see that

2712
1

= 73,441 ≡ 329 (mod 481).

We can square this result to obtain a value for 2712
2

(mod 481):

2712
2

≡ (2712
1

)2 (mod 481)

≡ (329)2 (mod 481)

≡ 108,241 (mod 481)

≡ 16 (mod 481).

We are using the fact that (a2
n

)2 ≡ a2·2
n ≡ a2

n+1

(mod n). Continuing, we
can calculate

2712
6

≡ 419 (mod 481)

and
2712

8

≡ 16 (mod 481).

Therefore,

271321 ≡ 2712
0+26+28 (mod 481)

≡ 2712
0

· 2712
6

· 2712
8

(mod 481)

≡ 271 · 419 · 16 (mod 481)

≡ 1,816,784 (mod 481)

≡ 47 (mod 481).

□
The method of repeated squares will prove to be a very useful tool when

we explore rsa cryptography. To encode and decode messages in a reasonable
manner under this scheme, it is necessary to be able to quickly compute large
powers of integers mod n.
Remark 2.4.2 Sage. Sage support for cyclic groups is a little spotty — but
we can still make effective use of Sage and perhaps this situation could change
soon.

CHAPTER 2. CYCLICITY 78

2.5 Exercises
1. Prove or disprove each of the following statements.

(a) All of the generators of Z60 are prime.

(b) U(8) is cyclic.

(c) Q is cyclic.

(d) If every proper subgroup of a group G is cyclic, then G is a cyclic
group.

(e) A group with a finite number of subgroups is finite.
2. Find the order of each of the following elements.

(a) 5 ∈ Z12

(b)
√
3 ∈ R

(c)
√
3 ∈ R∗

(d) −i ∈ C∗

(e) 72 in Z240

(f) 312 in Z471

3. List all of the elements in each of the following subgroups.

(a) The subgroup of Z generated by 7

(b) The subgroup of Z24 generated by 15

(c) All subgroups of Z12

(d) All subgroups of Z60

(e) All subgroups of Z13

(f) All subgroups of Z48

(g) The subgroup generated by 3 in U(20)

(h) The subgroup generated by 5 in U(18)

(i) The subgroup of R∗ generated by 7

(j) The subgroup of C∗ generated by i where i2 = −1

(k) The subgroup of C∗ generated by 2i

(l) The subgroup of C∗ generated by (1 + i)/
√
2

(m) The subgroup of C∗ generated by (1 +
√
3 i)/2

4. Find the subgroups of GL2(R) generated by each of the following matri-
ces.

(a)
(

0 1

−1 0

)

(b)
(
0 1/3

3 0

)
(c)

(
1 −1

1 0

)

(d)
(
1 −1

0 1

)
(e)

(
1 −1

−1 0

)

(f)
(√

3/2 1/2

−1/2
√
3/2

)
5. Find the order of every element in Z18.
6. Find the order of every element in the symmetry group of the square,

D4.

CHAPTER 2. CYCLICITY 79

7. What are all of the cyclic subgroups of the quaternion group, Q8?
8. List all of the cyclic subgroups of U(30).
9. List every generator of each subgroup of order 8 in Z32.
10. Find all elements of finite order in each of the following groups. Here the

“∗” indicates the set with zero removed.

(a) Z (b) Q∗ (c) R∗

11. If a24 = e in a group G, what are the possible orders of a?
12. Find a cyclic group with exactly one generator. Can you find cyclic groups

with exactly two generators? Four generators? How about n generators?
13. For n ≤ 20, which groups U(n) are cyclic? Make a conjecture as to what

is true in general. Can you prove your conjecture?
14. Let

A =

(
0 1

−1 0

)
and B =

(
0 −1

1 −1

)
be elements in GL2(R). Show that A and B have finite orders but AB
does not.

15. Evaluate each of the following.

(a) (3− 2i) + (5i− 6)

(b) (4− 5i)− (4i− 4)

(c) (5− 4i)(7 + 2i)

(d) (9− i)(9− i)

(e) i45

(f) (1 + i) + (1 + i)

16. Convert the following complex numbers to the form a+ bi.

(a) 2 cis(π/6)

(b) 5 cis(9π/4)

(c) 3 cis(π)

(d) cis(7π/4)/2
17. Change the following complex numbers to polar representation.

(a) 1− i

(b) −5

(c) 2 + 2i

(d)
√
3 + i

(e) −3i

(f) 2i+ 2
√
3

18. Calculate each of the following expressions.

(a) (1 + i)−1

(b) (1− i)6

(c) (
√
3 + i)5

(d) (−i)10

(e) ((1− i)/2)4

(f) (−
√
2−

√
2 i)12

(g) (−2 + 2i)−5

19. Prove each of the following statements.

(a) |z| = |z|

(b) zz = |z|2

(c) z−1 = z/|z|2

(d) |z + w| ≤ |z|+ |w|

(e) |z − w| ≥ ||z| − |w||

(f) |zw| = |z||w|
20. List and graph the 6th roots of unity. What are the generators of this

group? What are the primitive 6th roots of unity?
21. List and graph the 5th roots of unity. What are the generators of this

group? What are the primitive 5th roots of unity?

CHAPTER 2. CYCLICITY 80

22. Calculate each of the following.

(a) 2923171 (mod 582)

(b) 2557341 (mod 5681)

(c) 20719521 (mod 4724)

(d) 971321 (mod 765)

23. Let a, b ∈ G. Prove the following statements.

(a) The order of a is the same as the order of a−1.

(b) For all g ∈ G, |a| = |g−1ag|.

(c) The order of ab is the same as the order of ba.
24. Let p and q be distinct primes. How many generators does Zpq have?
25. Let p be prime and r be a positive integer. How many generators does

Zpr have?
26. Prove that Zp has no nontrivial subgroups if p is prime.
27. If g and h have orders 15 and 16 respectively in a group G, what is the

order of 〈g〉 ∩ 〈h〉?
28. Let a be an element in a group G. What is a generator for the subgroup

〈am〉 ∩ 〈an〉?
29. Prove that Zn has an even number of generators for n > 2.
30. Suppose that G is a group and let a, b ∈ G. Prove that if |a| = m and

|b| = n with gcd(m,n) = 1, then 〈a〉 ∩ 〈b〉 = {e}.
31. Let G be an abelian group. Show that the elements of finite order in G

form a subgroup. This subgroup is called the torsion subgroup of G.
32. Let G be a finite cyclic group of order n generated by x. Show that if

y = xk where gcd(k, n) = 1, then y must be a generator of G.
33. If G is an abelian group that contains a pair of cyclic subgroups of order

2, show that G must contain a subgroup of order 4. Does this subgroup
have to be cyclic?

34. Let G be an abelian group of order pq where gcd(p, q) = 1. If G contains
elements a and b of order p and q respectively, then show that G is cyclic.

35. Prove that the subgroups of Z are exactly nZ for n = 0, 1, 2,
36. Prove that the generators of Zn are the integers r such that 1 ≤ r < n

and gcd(r, n) = 1.
37. Prove that if G has no proper nontrivial subgroups, then G is a cyclic

group.
38. Prove that the order of an element in a cyclic group G must divide the

order of the group.
39. Prove that if G is a cyclic group of order m and d | m, then G must have

a subgroup of order d.
40. For what integers n is −1 an nth root of unity?
41. If z = r(cos θ+ i sin θ) and w = s(cosϕ+ i sinϕ) are two nonzero complex

numbers, show that

zw = rs[cos(θ + ϕ) + i sin(θ + ϕ)].

42. Prove that the circle group is a subgroup of C∗.
43. Prove that the nth roots of unity form a cyclic subgroup of T of order n.

CHAPTER 2. CYCLICITY 81

44. Let α ∈ T. Prove that αm = 1 and αn = 1 if and only if αd = 1 for
d = gcd(m,n).

45. Let z ∈ C∗. If |z| 6= 1, prove that the order of z is infinite.
46. Let z = cos θ + i sin θ be in T where θ ∈ Q. Prove that the order of z is

infinite.

2.6 Programming Exercises
1. Write a computer program that will write any decimal number as the sum

of distinct powers of 2. What is the largest integer that your program will
handle?

2. Write a computer program to calculate ax (mod n) by the method of re-
peated squares. What are the largest values of n and x that your program
will accept?

2.7 Sage Exercises
This group of exercises is about the group of units mod n, U(n), which is
sometimes cyclic, sometimes not. There are some commands in Sage that
will answer some of these questions very quickly, but instead of using those
now, just use the basic techniques described. The idea here is to just work
with elements, and lists of elements, to discern the subgroup structure of these
groups.

1. Execute the statement R = Integers(40) to create the set
[0,1,2,...,39] This is a group under addition mod 40, which we will
ignore. Instead we are interested in the subset of elements which have an
inverse under multiplication mod 40. Determine how big this subgroup is
by executing the command R.unit_group_order(), and then obtain a list
of these elements with R.list_of_elements_of_multiplicative_group().

2. You can create elements of this group by coercing regular integers into
U, such as with the statement a = U(7). (Don’t confuse this with our
mathematical notation U(40).) This will tell Sage that you want to view
7 as an element of U , subject to the corresponding operations. Deter-
mine the elements of the cyclic subgroup of U generated by 7 with a list
comprehension as follows:

R = Integers (40)
a = R(7)
[a^i for i in srange (16)]

What is the order of 7 in U(40)?
3. The group U(49) is cyclic. Using only the Sage commands described

previously, use Sage to find a generator for this group. Now using only
theorems about the structure of cyclic groups, describe each of the sub-
groups of U(49) by specifying its order and by giving an explicit generator.
Do not repeat any of the subgroups — in other words, present each sub-
group exactly once. You can use Sage to check your work on the subgroups,
but your answer about the subgroups should rely only on theorems and
be a nicely written paragraph with a table, etc.

4. The group U(35) is not cyclic. Again, using only the Sage commands
described previously, use computations to provide irrefutable evidence of

CHAPTER 2. CYCLICITY 82

this. How many of the 16 different subgroups of U(35) can you list?
5. Again, using only the Sage commands described previously, explore the

structure of U(n) for various values of n and see if you can formulate an
interesting conjecture about some basic property of this group. (Yes, this
is a very open-ended question, but this is ultimately the real power of
exploring mathematics with Sage.)

2.8 References and Suggested Readings
[1] Koblitz, N. A Course in Number Theory and Cryptography. 2nd ed.

Springer, New York, 1994.
[2] Pomerance, C. “Cryptology and Computational Number Theory—An In-

troduction,” in Cryptology and Computational Number Theory, Pomer-
ance, C., ed. Proceedings of Symposia in Applied Mathematics, vol. 42,
American Mathematical Society, Providence, RI, 1990. This book gives
an excellent account of how the method of repeated squares is used in
cryptography.

Chapter 3

Runestone Testing

We collect Runestone interactive items for testing here, in sections of their own.
Some of these samples only function if hosted on a Runestone server. To

see those in action, visit the copy of the Sample Book hosted on Runestone1

3.1 Programs
First, some samples of programs that are not interactive. They will be syntax
highlighted if a valid @language is specified. Optionally, lines can be numbered
and selected lines highlighted.

1 import javax.swing.JFrame; // Importing class JFrame
2 import javax.swing.JLabel; // Importing class JLabel
3 public class HelloWorld {
4 public static void main(String [] args) {
5 JFrame frame = new JFrame (); // Creating

frame
6 frame.setTitle("Hi!"); // Setting

title frame
7 frame.add(new JLabel("Hello ,␣world!"));// Adding

text to frame
8 frame.pack(); // Setting

size to smallest
9 frame.setLocationRelativeTo(null);

// Centering frame
10 frame.setVisible(true); // Showing

frame
11 }
12 }

Listing 3.1.1 A static Java program with highlighted lines
Instead of specifying @language on each program, a default can be specified

at docinfo/programs/@language. That value will be used for any program that
lacks a @language attribute. This sample does not specify it’s own @language
and is relying on the default set in this book.

1runestone.academy/ns/books/published/PTXSB/sample-book.html

83

https://runestone.academy/ns/books/published/PTXSB/sample-book.html

CHAPTER 3. RUNESTONE TESTING 84

1 def say_hello ():
2 print("Hello ,␣World!")
3
4 say_hello ()

Listing 3.1.2 Python program, relying on default programs language

3.2 ActiveCode
Programs in supported languages are made interactive in HTML when @interactive
is set to activecode. Some languages can be made interactive on any server,
while others require being served from Runestone servers. See Interactive Pro-
grams Capabilities in the PreTeXt Guide1 for a list of what languages are
supported in which environs.

print("Hello ,␣World!")

Listing 3.2.1 An interactive Python program, using Runestone
document.write (' Hello , world ! ') ;

Listing 3.2.2 An interactive JavaScript program, using Runestone
Some languages, like Java or C++, are only interactive when run on a

Runestone server where the code can be compiled and run. Those languages
can specify @compiler-args and @linker-args or @interpreter-args as ap-
propriate to the language. Default values for those options can be set in
<docinfo\slash{}programs> - any defaults set there will be used for any pro-
gram that lacks the corresponding attribute.
It may be convenient to set @compiler-args and @linker-args at the book
level in <docinfo\slash{}programs>. Values specified in that location will be
used for any <program> that does not override the values by specifying its own
attributes.

#include <iostream >
#include <string >
using namespace std;
int main() {

string name;
cin >> name;
cout << "Hello ,␣" << name << endl;
return 0;

}

Listing 3.2.3 A C++ program with compiler-args and stdin
1pretextbook.org/doc/guide/html/topic-program-console.html#

interactive-program-capabilities

https://pretextbook.org/doc/guide/html/topic-program-console.html#interactive-program-capabilities
https://pretextbook.org/doc/guide/html/topic-program-console.html#interactive-program-capabilities

CHAPTER 3. RUNESTONE TESTING 85

import javax.swing.JFrame; // Importing class JFrame
import javax.swing.JLabel; // Importing class JLabel
public class HelloWorld {

public static void main(String [] args) {
JFrame frame = new JFrame (); // Creating

frame
frame.setTitle("Hi!"); // Setting

title frame
frame.add(new JLabel("Hello ,␣world!"));// Adding

text to frame
frame.pack(); // Setting

size to smallest
frame.setLocationRelativeTo(null); // Centering

frame
frame.setVisible(true); // Showing

frame
}

}

Listing 3.2.4 Java “Hello, World”, with flags
An Octave program will also only be interactive if hosted on a Runestone

server. Octave is meant to be a drop-in replacement for Matlab.
x = 2 + 2
printf("%d\n", x)

Listing 3.2.5 A simple Octave program
A language not supported by Runestone Services will always be rendered

static.
program HelloWorld;
begin

WriteLn(' Hello ,␣world! ');
end.

Listing 3.2.6 A Pascal program that cannot be interactive on Runestone
A program can have a <preamble> and/or <postamble> which are added to

the code that the user writes before it is run. They are visible by default, but
can be made invisible with @visible set to "no". When visible, the code editor
will prevent those regions from being modified. The indentation for lines in the
preamble/code/postamble elements will be calculated relative to each other -
make sure to indent them all to a similar extent. (In the source for the sample
below, the # TODO... is intentially indented one stop extra so that the user’s
code is part of the add function.

<tests> are similar to <postamble> in that it represents code that is added
to the users submission. However, <tests> is intended specifically for unit
testing code (see examples below for unit testing in Python, Java, C++, SQL).
Tests are invisble by default and can be made visible with @visible set to "yes".
For historical reasons, the indentation of the <tests> is treated separately from
the rest of the program.

CHAPTER 3. RUNESTONE TESTING 86

def add(a, b):
TODO - complete the add function

Use the function
result = add(2, 3)
if result == 5:

print("Test␣passed")
else:

print("Test␣failed")

Listing 3.2.7 A Python program with preamble/postamble
Here is the same Python program from the previous section, but now with

a <preamble> and <postamble> that are invisible. The user will not see the
code that is added to their submission. Not actually useful in this case, but it
might be if you wanted to hide boilerplate setup from the reader.

TODO - complete the add function

Listing 3.2.8 A Python program with invisible pre/post ambles
The following Python program is in a <listing> since we will want to

reference it shortly. The program does not do very much, it just defines four
variables whose values are lists of statistics. It should run, and there will be
no syntax errors, but it is a bit boring since there is no output. Note that
it does not have an @language and is relying on the default one specified in
<docinfo\slash{}programs>

loan_amount = [1250.0 , 500.0, 1450.0 , 200.0, 700.0, 100.0,
250.0, 225.0, 1200.0 , 150.0, 600.0, 300.0, 700.0,
125.0, 650.0, 175.0, 1800.0 , 1525.0 , 575.0, 700.0,
1450.0 , 400.0, 200.0, 1000.0 , 350.0]

country_name = [' Azerbaijan ' , ' El␣Salvador ' , ' Bolivia ' ,
' Paraguay ' , ' El␣Salvador ' , ' Philippines ' ,
' Philippines ' , ' Nicaragua ' , ' Guatemala ' , ' Philippines ' ,
' Paraguay ' , ' Philippines ' , ' Bolivia ' , ' Philippines ' ,
' Philippines ' , ' Madagascar ' , ' Georgia ' , ' Uganda ' ,
' Kenya ' , ' Tajikistan ' , ' Jordan ' , ' Kenya ' ,
' Philippines ' , ' Ecuador ' , ' Kenya ']

time_to_raise = [193075.0 , 1157108.0 , 1552939.0 , 244945.0 ,
238797.0 , 1248909.0 , 773599.0 , 116181.0 , 2288095.0 ,
51668.0 , 26717.0 , 48030.0 , 1839190.0 , 71117.0 ,
580401.0 , 800427.0 , 1156218.0 , 1166045.0 , 2924705.0 ,
470622.0 , 24078.0 , 260044.0 , 445938.0 , 201408.0 ,
2370450.0]

num_lenders_total = [38, 18, 51, 3, 21, 1, 10, 8, 42, 1,
18, 6, 28, 5, 16, 7, 54, 1, 18, 22, 36, 12, 8, 24, 8]

Listing 3.2.9 A Python program that defines some statistics
Now a programming exercise. The program upcoming is going to include

all the code of the program preceding. This is accomplished with an @include
attribute on the including program whose value is the @xml:id of the included
program. So by running the next program, it should pass all of its three tests
(for example another example using unit tests, see Checkpoint 3.4.4). Now
reload the page, do not run the program in the listing, and then see that the
program in the exercise still runs correctly.

You’ll see nothing that tells the reader that the one chunk of code is prefac-

CHAPTER 3. RUNESTONE TESTING 87

ing the other. And in static formats it might be even less obvious. So you will
want to say something to alert the reader. Here it is easy: Checkpoint 3.2.10
includes all the code from Listing 3.2.9.

This program also makes use of @autorun to execute on page load and the
@codelensto disable the codelens feature.
Checkpoint 3.2.10 A Python program, including another. Compute
the total amount of money loaned and store it in the variable loan_total.

loan_total = 0
for loan in loan_amount:

loan_total += loan
print(loan_total)

Exact same exercise again, but now we include two programs. We first get
the simple “Hello, world!” program at Listing 3.2.1 and then the same program
defining the variables with lists of statistics at Listing 3.2.9. So the output just
includes the extra result from the print() statement.

This program also makes use of @hidecode to initially keep the code hidden
and @download to enable a file download of the program (that includes all the
included code).

Checkpoint 3.2.11 A Python program, including two others. Com-
pute the total amount of money loaned and store it in the variable loan_total.

loan_total = 0
for loan in loan_amount:

loan_total += loan
print(loan_total)

Here is an activecode with @language set to sql uses the @database to load
a SQLite database file.
Checkpoint 3.2.12 An SQL program that uses an SQLite database
file. Select all the columns of all the rows in the test database table.

SELECT * FROM test

A nonsense paragraph just to check on spacing. A nonsense paragraph
just to check on spacing. A nonsense paragraph just to check on spacing. A
nonsense paragraph just to check on spacing.

3.3 Code Lens
CodeLens is an interactive tool for following program execution, much like a
debugger, without the ability to influence flow control or variable values. For
use without a server, traces must be computed beforehand. First, we have
some trivial programs, to provide minimal testing.

print(' Hello ,␣World! ')

Listing 3.3.1 A Python program, stepable with CodeLens
#include <stdio.h>

int main(void)
{

puts("Hello ,␣World!");
}

Listing 3.3.2 An C program, stepable with CodeLens

CHAPTER 3. RUNESTONE TESTING 88

public class HelloWorld {
public static void main(String [] args) {

System.out.println("Hello ,␣World!");
}

}

Listing 3.3.3 A Java program, stepable with CodeLens
Now some moderately more complicated programs to find teh prime num-

bers less than 20. We do not vouch for the quality of these, or even their
correctness!

def SieveOfEratosthenes(n):
array of type boolean with True values in it
prime = [True for i in range(n + 1)]
p = 2
while (p * p <= n):

If it remain unchanged it is prime
if (prime[p] == True):

updating all the multiples
for i in range(p * 2, n + 1, p):

prime[i] = False
p += 1

prime [0]= False
prime [1]= False
Print
for p in range(n + 1):

if prime[p]:
print (p,end="␣")

main
if __name__ == ' __main__ ' :

n = 20
print ("The␣prime␣numbers␣smaller␣than␣or␣equal␣to",

n,"is")
SieveOfEratosthenes(n)

Listing 3.3.4 Sieve of Eratosthenes1, Java

#include <stdio.h>
const int len = 20;
int main() {

int arr [20] = {0};
for (int i = 2; i < len; i++) {

for (int j = i * i; j < len; j+=i) {
arr[j - 1] = 1;

}
}
for (int i = 1; i < len; i++) {

if (arr[i - 1] == 0)
printf("␣%d", i);

}
}

Listing 3.3.5 Sieve of Eratosthenes2, C++

1www.tutorialspoint.com/python-program-for-sieve-of-eratosthenes
2www.tutorialspoint.com/cplusplus-program-to-implement-sieve-of-eratosthenes-to-generate-prime-numbers-between-given-range

https://www.tutorialspoint.com/python-program-for-sieve-of-eratosthenes
https://www.tutorialspoint.com/cplusplus-program-to-implement-sieve-of-eratosthenes-to-generate-prime-numbers-between-given-range

CHAPTER 3. RUNESTONE TESTING 89

public class SievePrimeFactors {
public static void main(String args []) {

int num = 20;
boolean [] bool = new boolean[num];

for (int i = 0; i< bool.length; i++) {
bool[i] = true;

}
for (int i = 2; i < Math.sqrt(num); i++) {

if(bool[i] == true) {
for(int j = (i*i); j < num; j = j+i) {

bool[j] = false;
}

}
}
System.out.println("List␣of␣prime␣numbers:␣");
for (int i = 2; i< bool.length; i++) {

if(bool[i]== true) {
System.out.println(i);

}
}

}
}

Listing 3.3.6 Sieve of Eratosthenes3, Java

3.4 Coding Exercises
Program listings can be more that just live demonstrations, they can be exer-
cises. The first two also occur in the sample article where they just get a static
rendering, if at all.
Checkpoint 3.4.1 Inline Coding Exercise, No Help. An exercise
might ask a reader to write a computer program, that would go here in the
<statement>. But you can also add a <program> element after a <statement>.
Here we place no code at all, but we do say we want it to be interactive. The
purpose is to make it a live coding environment for a version of your output
that allows the reader to perhaps submit a solution. The <program> element
is necessary so you can specify a programming language.

In interactive formats, try creating and running a Python program below.
Use CodeLens to step through the program.
Hint. We didn’t really ask you to do anything.
Checkpoint 3.4.2 Inline Coding Exercise, Partial. Similar to above,
but we provide a starting point for the exercise.

#include <stdio.h>

int main(void)

Answer. We’re not really sure. But it would begin as follows:
#include <stdio.h>

int main(void)

3www.tutorialspoint.com/Sieve-of-Eratosthenes-in-java

https://www.tutorialspoint.com/Sieve-of-Eratosthenes-in-java

CHAPTER 3. RUNESTONE TESTING 90

Activity 3.4.1 Activity Coding Exercise. Similar to above, but now as a
complete Python program inside an <activity>. This demonstrates the possi-
bility to use any “project-like” block (<project>, <activity>, <exploration>,
<investigation>), but not in the case when structured with <task>. (There
is an empty <tests> element here, designed to test relief for an error this will
cause on a Runestone server.)

for i in range (10):
print(i)

Answer. We’re still not really sure.
Checkpoint 3.4.3 An Exercise with a Static Program. Similar to above,
again, but we place the <program> element inside the <statement>, not after
it as a peer. This signals that this is not a coding exercise and the program
will render static, since it is explicitly labeled as not being interactive.

#include <stdio.h>

int main(void)

Solution. We’re not really sure. Still.
Unit testing can be used to automatically evaluate student work. Unit

testing frameworks are available for Python, Java, and C++
Checkpoint 3.4.4 Coding Exercise, with Unit Tests. Fix the following
code so that it always correctly adds two numbers. [Ed. Unit test support is
experimental.]

def add(a,b):
return 4

Answer. We’re not really sure. But it would begin as follows:
#include <stdio.h>

int main(void)

Checkpoint 3.4.5 Java Exercise, with Unit Tests. Unit tests for Java
can be written using junit.

public class StudentCode
{

public static void main(String [] args)
{

for(int count = 2; count $lt;= 10; count ++)
{

System.out.println(count);
}

}

public int adder(int a, int b) {
return a+b;

}
}

Checkpoint 3.4.6 C++ Exercise, with Unit Tests. Unit tests for C++
can be written using doctest or catch. Doctest based tests build substantially
faster than catch based ones.

In an interactive environment, the tests in this exercise will be made visible,
but uneditable, so that in the event of a failed test the student can see exactly

CHAPTER 3. RUNESTONE TESTING 91

what is being tested (Doctest does not report on individual passed tests and
the feedback on failed tests generally won’t make sense without the test itself).

// Complete the function to return the sum of two numbers
int add(int a, int b) {

}

For simple programs, or languages without an available unit testing frame-
work, input-output testing can be done instead. IO testing can only be done on
languages that are run on a Runestone server (Java/C/C++/Octave/Python3).

Checkpoint 3.4.7 C++ Exercise, with IO Tests. Read in an integer n.
Print out a n by n square of asterisks.

#include <iostream >
using namespace std;
int main() {

int n;
cin >> n;
for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {
cout << "*";

}
cout << endl;

}
}

3.5 Data Files
In the following file of climate data, the first column is Year, second column is
Global Average Temperature (Celcius), and the third column is Global Emmi-
sions C02 (Giga-tons). [Normally you might place this inside a block with the
<datafile>.]
Data: ccdata1.txt

1850 -0.37 2.24E-7
1860 -0.34 3.94E-7
1870 -0.28 6.6E-7
1880 -0.24 1.1
1890 -0.42 1.72
1900 -0.2 2.38
1910 -0.49 3.34
1920 -0.25 4.01
1930 -0.14 4.53
1940 0.01 5.5
1950 -0.17 6.63
1960 -0.05 10.5
1970 -0.03 16
1980 0.09 20.3
1990 0.3 22.6
2000 0.29 24.9
2010 0.56 32.7
2019 0.74 33.3

ccfile = open("ccdata1.txt", "r")

for aline in ccfile:

CHAPTER 3. RUNESTONE TESTING 92

values = aline.split ()
print(' In ' , values [0], ' the␣average␣temp.␣was ' ,

values [1], ' °C␣and␣CO2␣emmisions␣were ' , values [2],
' gigatons. ')

ccfile.close ()

Data 3.5.1 Stack Overflow Developer Survey. [A data file can go lots of
places. But to make it more prominent, and easy to cross-reference, it would
be natural to put it into a <data> block.]

Now that you are experienced with working with files lets look at a bit of
the data set. The survey had 98,855 respondents. We will work with a sample
of 2000 of those responses for this lab. In addition we have narrowed down the
questions from 129 to just 13. The columns we have included in this data set
are:

1. Respondent

2. Country

3. JobSatisfaction

4. UndergradMajor

5. ConvertedSalary

6. Exercise

7. Gender

8. RaceEthnicity

9. EducationParents

10. HoursOutside

11. Age

12. LastNewJob

13. LanguageWorkedWith

Data: so_survey.csv

Respondent|Country|JobSatisfaction|UndergradMajor|ConvertedSalar→
51900|United Kingdom|Moderately satisfied|Computer science, comp→
95836|Argentina|Slightly satisfied|A business discipline (ex. ac→
51710|Germany|Slightly dissatisfied|A social science (ex. anthro→
44125|United States|Moderately dissatisfied|A social science (ex→
35167|United Kingdom|Extremely satisfied|A humanities discipline→
31721|Japan|Slightly dissatisfied|Information systems, informati→
36729|Brazil|Moderately dissatisfied|Computer science, computer →
38620|Germany|Moderately dissatisfied|Computer science, computer→
54695|Netherlands|Moderately satisfied|Computer science, compute→

Data: luther-bell.jpg

CHAPTER 3. RUNESTONE TESTING 93

import image
img = image.Image("luther -bell.jpg")

print(img.getWidth ())
print(img.getHeight ())

p = img.getPixel (45, 55)
print(p.getRed (), p.getGreen (), p.getBlue ())

Computation 3.5.2 Golden Gate Bridge Image processing. This image
has a Creative Commons license, but we’ve lost track of the exact terms.

[Now a data file and a program to process it, all bundled up inside a
<computation>, since an <example> gets knowled and the ActiveCode does
not fill.]

Data: golden_gate.png

This program changes every pixel of the image.

CHAPTER 3. RUNESTONE TESTING 94

import image

img = image.Image("golden_gate.png")
win = image.ImageWin(img.getWidth (), img.getHeight ())
img.draw(win)

img.setDelay(delay , number of pixels between delay)
setDelay(1, 400) will speed up a lot
img.setDelay (1,15)

for row in range(img.getHeight ()):
for col in range(img.getWidth ()):

p = img.getPixel(col , row)

newred = p.red * 1.4
newgreen = p.green * .75
newblue = p.blue * 1.1

newpixel = image.Pixel(newred , newgreen , newblue)

img.setPixel(col , row , newpixel)

img.draw(win)
win.exitonclick ()

The examples above all use Python, which will run in your browser. Other
languages will only run when a project is hosted on Runestone Academy servers.
And in this case there is a small twist. You need to indicate which existing
<datafile> your program needs, even if that seems obvious by reading the
code. Use a @datafile attribute on <program> that has a list of filenames.
These are the filenames you set via the @filename attribute of the <datafile>
element, and are the names you use in your program’s code. As before, no
path information is neede, nor allowed.

[2023-02-21: testing for single files first, list of several not yet implemented.]
When the @language attribute of a <program> is set to python3 that means

in-browser Python is not good enough, and you want the greater power and
flexibility of having your code run on a Runestone Academy server. So this is
our first example of using the @datafile attribute.

The data file is an abbreviated version of the example above, just to be
different. And is not editable.

Data: ccdata2.txt

1900 -0.2 2.38
1910 -0.49 3.34
1920 -0.25 4.01
1930 -0.14 4.53

The program is identical to the above, but we specify python3 as the language,
and use the smaller file. So this example is only active when this content is
hosted on a Runestone Academy server.

ccfile = open("ccdata2.txt", "r")

for aline in ccfile:
values = aline.split ()
print(' In ' , values [0], ' the␣average␣temp.␣was ' ,

values [1], ' °C␣and␣CO2␣emmisions␣were ' , values [2],
' gigatons. ')

CHAPTER 3. RUNESTONE TESTING 95

ccfile.close ()

[2023-02-24 Testing Java with multiple data files]

Data 3.5.3 Flowers. Two flower images as <datafile> for use in upcoming
Java program.

Data: flower1.jpg

Data: flower2.jpg

import java.awt .*;
import java.awt.font .*;
import java.awt.geom .*;
import java.awt.image.BufferedImage;
import java.text .*;
import java.util .*;
import java.util.List;

/**
* A class that represents a picture. This class inherits

from
* SimplePicture and allows the student to add

functionality to
* the Picture class.
*
* @author Barbara Ericson ericson@cc.gatech.edu
*/

public class Picture extends SimplePicture
{

// /////////////////// constructors
//////////////////////////////////

/**
* Constructor that takes no arguments
*/

public Picture ()
{

/* not needed but use it to show students the implicit
call to super ()

* child constructors always call a parent constructor
*/

super ();
}

/**
* Constructor that takes a file name and creates the

CHAPTER 3. RUNESTONE TESTING 96

picture
* @param fileName the name of the file to create the

picture from
*/

public Picture(String fileName)
{

// let the parent class handle this fileName
super(fileName);

}

/**
* Constructor that takes the height and width
* @param height the height of the desired picture
* @param width the width of the desired picture
*/

public Picture(int width , int height)
{

// let the parent class handle this width and height
super(width ,height);

}

/**
* Constructor that takes a picture and creates a
* copy of that picture
* @param copyPicture the picture to copy
*/

public Picture(Picture copyPicture)
{

// let the parent class do the copy
super(copyPicture);

}

/**
* Constructor that takes a buffered image
* @param image the buffered image to use
*/

public Picture(BufferedImage image)
{

super(image);
}
// //////////////////// methods

///////////////////////////////////////

/**
* Method to return a string with information about this

picture.
* @return a string with information about the picture

such as fileName ,
* height and width.
*/

public String toString ()
{

String output = "Picture ,␣filename␣" + getFileName () +
"␣height␣" + getHeight ()
+ "␣width␣" + getWidth ();

return output;
}

/**

CHAPTER 3. RUNESTONE TESTING 97

zeroBlue () method sets the blue values at all pixels to
zero

*/
public void zeroBlue ()
{

Pixel [][] pixels = this.getPixels2D ();

for (Pixel [] rowArray : pixels)
{

for (Pixel p: rowArray)
{

p.setBlue (0);
}

}
}

/* mirrorVertical () */
public void mirrorVertical ()
{

Pixel [][] pixels = this.getPixels2D ();
Pixel leftPixel = null;
Pixel rightPixel = null;
int width = pixels [0]. length;
for (int row = 0; row < pixels.length; row ++)
{

for (int col = 0; col < width / 2; col ++)
{

leftPixel = pixels[row][col];
rightPixel = pixels[row][width - 1 - col];
rightPixel.setColor(leftPixel.getColor ());

}
}

}

/** copy from the passed fromPic to the
* specified startRow and startCol in the
* current picture
* @param fromPic the picture to copy from
* @param startRow the start row to copy to
* @param startCol the start col to copy to
*/

public void copy(Picture fromPic ,
int startRow , int startCol)

{
Pixel fromPixel = null;
Pixel toPixel = null;
Pixel [][] toPixels = this.getPixels2D ();
Pixel [][] fromPixels = fromPic.getPixels2D ();
for (int fromRow = 0, toRow = startRow;

fromRow < fromPixels.length &&
toRow < toPixels.length;
fromRow++, toRow ++)

{
for (int fromCol = 0, toCol = startCol;

fromCol < fromPixels [0]. length &&
toCol < toPixels [0]. length;
fromCol++, toCol ++)

{
fromPixel = fromPixels[fromRow][fromCol];

CHAPTER 3. RUNESTONE TESTING 98

toPixel = toPixels[toRow][toCol];
toPixel.setColor(fromPixel.getColor ());

}
}

}

public void createCollage ()
{

// You can also try butterfly.jpg and snowflake.jpg
Picture flower1 = new Picture("flower1.jpg");
Picture flower2 = new Picture("flower2.jpg");
this.copy(flower1 ,0,0);
this.copy(flower2 ,100 ,0);
this.copy(flower1 ,200 ,0);
Picture flowerNoBlue = new Picture(flower2);
flowerNoBlue.zeroBlue ();
this.copy(flowerNoBlue ,300 ,0);
this.copy(flower1 ,400 ,0);
this.copy(flower2 ,500 ,0);
this.mirrorVertical ();
this.show();

}

/* Main method for testing
*/

public static void main(String [] args)
{

Picture p = new Picture (500 ,500);
p.createCollage ();

}
}

The following is experimental, as of 2023-07-05, and needs some organiza-
tion, plus some credit to CSAwesome and Barb Ericson.

Data: beach.jpg

Data: pictureClasses1.jar

import java.awt.Image;
import java.awt.image.BufferedImage;

/**
* Interface to describe a digital picture. A digital pict→
* associated file name. It can have a title. It has pixe→
* associated with it and you can get and set the pixels. →
* can get an Image from a picture or a BufferedImage. You→
* it from a file name or image. You can show a picture. →
* explore a picture. You can create a new image for it.
*
* @author Barb Ericson ericson@cc.gatech.edu
*/
public interface DigitalPicture
{

CHAPTER 3. RUNESTONE TESTING 99

public String getFileName(); // get the file name that th→
public String getTitle(); // get the title of the picture
public void setTitle(String title); // set the title of t→
public int getWidth(); // get the width of the picture in→
public int getHeight(); // get the height of the picture →

import java.awt .*;
import java.awt.font .*;
import java.awt.geom .*;
import java.awt.image.BufferedImage;
import java.text .*;
import java.util .*;
import java.util.List;

/**
* A class that represents a picture. This class inherits

from
* SimplePicture and allows the student to add

functionality to
* the Picture class.
*
* @author Barbara Ericson ericson@cc.gatech.edu
*/

public class Picture extends SimplePicture
{

// /////////////////// constructors
//////////////////////////////////

/**
* Constructor that takes no arguments
*/

public Picture ()
{

/* not needed but use it to show students the implicit
call to super ()

* child constructors always call a parent constructor
*/

super ();
}

/**
* Constructor that takes a file name and creates the

picture
* @param fileName the name of the file to create the

picture from
*/

public Picture(String fileName)
{

// let the parent class handle this fileName
super(fileName);

}

/**
* Constructor that takes the height and width
* @param height the height of the desired picture
* @param width the width of the desired picture
*/

public Picture(int height , int width)
{

CHAPTER 3. RUNESTONE TESTING 100

// let the parent class handle this width and height
super(width ,height);

}

/**
* Constructor that takes a picture and creates a
* copy of that picture
* @param copyPicture the picture to copy
*/

public Picture(Picture copyPicture)
{

// let the parent class do the copy
super(copyPicture);

}

/**
* Constructor that takes a buffered image
* @param image the buffered image to use
*/

public Picture(BufferedImage image)
{

super(image);
}
// //////////////////// methods

///////////////////////////////////////

/**
* Method to return a string with information about this

picture.
* @return a string with information about the picture

such as fileName ,
* height and width.
*/

public String toString ()
{

String output = "Picture ,␣filename␣" + getFileName () +
"␣height␣" + getHeight ()
+ "␣width␣" + getWidth ();

return output;

}

/**
zeroBlue () method sets the blue values at all pixels to

zero
*/
public void zeroBlue ()
{

Pixel [][] pixels = this.getPixels2D ();

for (Pixel [] rowArray : pixels)
{

for (Pixel p: rowArray)
{

p.setBlue (0);
}

}
}

CHAPTER 3. RUNESTONE TESTING 101

/*
keepOnlyBlue () method sets the blue values at all

pixels to zero.

Add new method here and call it from main.
*/

/* Main method for testing
*/

public static void main(String [] args)
{

Picture pict = new Picture("beach.jpg");
pict.show();
pict.zeroBlue (); // Change this to call keepOnlyBlue ()
pict.show();

}
}

3.6 YouTube Videos
Runestone uses a YouTube API that broadcasts events when a reader interacts
with a video. In this way, Runestone can record video-watching as an activity.
As PreTeXt output we concede better behavior on small screens (“responsive-
ness”) to enable this feature in a Runestone version. A @label attribute is
necessary for persistence in the Runestone database. Various PreTeXt fea-
tures, such as playlists, are not yet supported—make a request.

The margins here are asymmetric just as a test. And this text is here to
see where the video ends.

3.7 Deeper
This is a stub of a <section>, but it contains two <subsection> which each
contain a PROJECT-LIKE item that includes a <program> element, and thus
is a coding exercise. This tests migration to the Runestone assignment area,
though Runestone only has divisions two-deep (“chapter” and “subchapter”,
so both will show up associated with the same <section>—this one.

The first is a start of a C program, so will only be interactive on a Runestone
server. The second is a Python program, so will be interactive in all HTML
outputs.

CHAPTER 3. RUNESTONE TESTING 102

3.7.1 Subsection One
An <activity> next. This one has a <program> so will be made interactive
whenever possible.
Activity 3.7.1 Activity in a Subsection. We would suggest you do some-
thing here.

#include <stdio.h>

int main(void)

Nothing suggests this next <project> is interactive.
Project 3.7.2 Project in a Subsection. You would work this project on
paper, most likely. It is never interactive since there is no indication of a desire
for that, even if hosted on a capable platform.

A little bit of markup, to test a bug: x2. (The bug was only apparent under
a deprecated method for specify a question to be an interactive short-answer
question on Runestone Academy.)

3.7.2 Subsection Two
An <exploration> next.
Exploration 3.7.3 Exploration in a Subsection. We would suggest now
that you explore something here. In this case we simply provide a CodeLens,
which would be graded as an “interaction”.

for i in range (10):
print(i)

The next simple <exercise> will be a “short answer” question on a capable
interactive platform since we have included a <response> element.
Checkpoint 3.7.1 Inline Exercise in a Subsection. I am an interactive
short answer question, but only on a capable platform.

3.8 True/False Exercises
1. True/False. Every vector space has finite dimension.

True or False?
Hint. Pn, the vector space of polynomials with degree at most n, has
dimension n+ 1 by Theorem 1.2.16. [Cross-reference is just a demo, con-
tent is not relevant.] What happens if we relax the defintion and remove
the parameter n?
Answer. False.
Solution. False.

The vector space of all polynomials with finite degree has a basis,
B = {1, x, x2, x3, . . . }, which is infinte.

3.9 Multiple Choice Exercises
When this <exercises> division is hosted on Runestone Academy, it will be
enabled for group work. See group selection and submission features are at the
end of the division. See [cross-reference to target(s) "worksheet-groupwork"
missing or not unique] for more detail. (2024-07-24: experimental.)

CHAPTER 3. RUNESTONE TESTING 103

1. Multiple-Choice, Not Randomized, One Answer. What color is a
stop sign?

A. Green

B. Red

C. White

Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

2. Multiple-Choice, Not Randomized, Multiple Answers. Which
colors might be found in a rainbow? (Note that the radio buttons now
allow multiple buttons to be selected.)

A. Red

B. Yellow

C. Black

D. Green

Hint. Do you know the acronym…roy g biv for the colors of a rainbow,
and their order?
Answer. A, B, D.
Solution.

A. Correct.
Red is a definitely one of the colors.

B. Correct.
Yes, yellow is correct.

C. Incorrect.
Remember the acronym…roy g biv. “B” stands for blue.

D. Correct.
Yes, green is one of the colors.

3. Multiple-Choice, Randomized, One Answer. What color is a stop
sign? [Static versions retain the order as authored.]

A. Green

CHAPTER 3. RUNESTONE TESTING 104

B. Red

C. White

Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

4. Multiple-Choice, Randomized, Multiple Answers. Which colors
might be found in a rainbow? (Note that the radio buttons now allow
multiple buttons to be selected.) [Static versions retain the order as au-
thored.]

A. Red

B. Yellow

C. Black

D. Green

Hint. Do you know the acronym…roy g biv for the colors of a rainbow,
and their order?
Answer. A, B, D.
Solution.

A. Correct.
Red is a definitely one of the colors.

B. Correct.
Yes, yellow is correct.

C. Incorrect.
Remember the acronym…roy g biv. “B” stands for blue.

D. Correct.
Yes, green is one of the colors.

5. Mathematical Multiple-Choice, Not Randomized, Multiple An-
swers. Which of the following is an antiderivative of 2 sin(x) cos(x)?

A. sin2(x) + 832

B. sin2(x)

C. − cos2(x)

D. −2 cos(x) sin(x)

CHAPTER 3. RUNESTONE TESTING 105

Hint. You can take a derivative on any one of the choices to see if it is
correct or not, rather than using techniques of integration to find a single
correct answer.
Answer. A, B, C.
Solution.

A. Correct.
Remember that when we write +C on an antiderivative that this is
the way we communicate that there are many possible derivatives,
but they all “differ by a constant”.

B. Correct.
The derivative given in the statement of the problem looks exactly
like an application of the chain rule to sin2(x).

C. Correct.
Take a derivative on − cos2(x) to see that this answer is correct. Ex-
tra credit: does this answer “differ by a constant” when subtracted
from either of the other two correct answers?

D. Incorrect.
The antiderivative of a product is not the product of the antideriva-
tives. Use the product rule to take a derivative and see that this
answer is not correct.

3.10 Parsons Exercises
1. Parsons Problem, Mathematical Proof. Create a proof of the theo-

rem: If n is an even number, then n ≡ 0 mod 2.
[Ed. If you examine the source, you will also notice the

<exercise> lacks a @language attribute. It is relying on the
docinfo/parsons/@language value that is in bookinfo.xml. If present,
that attribute will be used for any Parsons that lack a @language.]

• Click the heels of your ruby slippers together three times.

• Suppose n is even.

• Either:
Then n is a prime number.
Or:
Then there exists an m so that n = 2m.
Or:
Then there exists an m so that n = 2m+ 1.

• Thus n ≡ 0 mod 2.

• So n = 2m+ 0.
This is a superfluous second paragraph in this block.

• And a little bit of irrelevant multi-line math

c2a2 + b2

x2 + y2.

CHAPTER 3. RUNESTONE TESTING 106

Solution.

• Suppose n is even.

• Then there exists an m so that n = 2m.

• So n = 2m+ 0.
This is a superfluous second paragraph in this block.

• Thus n ≡ 0 mod 2.
2. Parsons Problem, Partial Ordering. Parsons problems can specify a

partial ordering that allows for multiple valid solutions.
Try putting the blocks in a valid order to calculate and printc Only

use the required blocks. There are many valid orderings.

• c = math.sqrt(cSquared)

• Either:
b = 4

Or:
4 = b

• cSquared = a ** 2 + b ** 2

• print(c)

• import math

• a = 3

• import antigravity

Solution.
import math
a = 3
b = 4
cSquared = a ** 2 + b ** 2
c = math.sqrt(cSquared)
print(c)

3. Parsons Problem, Programming. The Sieve of Eratosthenes com-
putes prime numbers by starting with a finite list of the integers bigger
than 1. The first member of the list is a prime and is saved/recorded.
Then all multiples of that prime (which not a prime, excepting the prime
itself!) are removed from the list. Now the first number remaining in the
list is the next prime number. And the process repeats.

The code blocks below can be rearranged to form one of the many
possible programs to implement this algorithm to compute a list of all the
primes less than 250. [Ed. this version of this problem requires the reader
to provide the necessary indentation.]

This reprises Exercise I.2.5.1.

• for nonprime in range(p, n, p):

• Either:
primes = []

CHAPTER 3. RUNESTONE TESTING 107

candidates = list(range(2,n))

Or:
candidates = []
primes = list(range(2,n))

• p = candidates[0]
primes.append(p)

• print(primes)

• if nonprime in candidates:
candidates.remove(nonprime)

• n = 250

• primes = candidates + [p]

• while candidates:

Solution.
n = 250
primes = []
candidates = list(range(2,n))
while candidates:

p = candidates [0]
primes.append(p)
for nonprime in range(p, n, p):

if nonprime in candidates:
candidates.remove(nonprime)

print(primes)

4. Parsons Problem with executable. Parsons problems that have a
language specified that corresponds to a valid activecode language can be
made runnable.

Complete the Python function isolateRed(p) If either the blue or
green is higher than the red, average the three color values and set red,
green, and blue to be that average. Otherwise, do nothing to p.

After you check a correct answer you will be able to Run the code you
created - it will be used to modify the image shown below.

• ␣␣␣␣␣␣␣␣p.red␣=␣avg
␣␣␣␣␣␣␣␣p.blue␣=␣avg
␣␣␣␣␣␣␣␣p.green␣=␣avg

• ␣␣␣␣if␣p.green␣>␣p.red␣or␣p.blue␣>␣p.red:

CHAPTER 3. RUNESTONE TESTING 108

• ␣␣␣␣␣␣␣␣avg␣=␣(p.red␣+␣p.blue␣+␣p.green)␣/␣3

• def␣isolateRed(p):

Solution.
def isolateRed(p):

if p.green > p.red or p.blue > p.red:
avg = (p.red + p.blue + p.green) / 3
p.red = avg
p.blue = avg
p.green = avg

5. Parsons Problem, Programming. The Sieve of Eratosthenes com-
putes prime numbers by starting with a finite list of the integers bigger
than 1. The first member of the list is a prime and is saved/recorded.
Then all multiples of that prime (which not a prime, excepting the prime
itself!) are removed from the list. Now the first number remaining in the
list is the next prime number. And the process repeats.

The code blocks below can be rearranged to form one of the many
possible programs to implement this algorithm to compute a list of all the
primes less than 250. [Ed. this version of this problem does not require
the reader to provide the necessary indentation, which is the default.]

This reprises Exercise I.2.5.1.

• ␣␣␣␣for␣nonprime␣in␣range(p,␣n,␣p):

• Either:
primes = []
candidates = list(range(2,n))

Or:
candidates = []
primes = list(range(2,n))

• ␣␣␣␣p␣=␣candidates[0]
␣␣␣␣primes.append(p)

• print(primes)

• ␣␣␣␣␣␣␣␣if␣nonprime␣in␣candidates:
␣␣␣␣␣␣␣␣␣␣␣␣candidates.remove(nonprime)

• n␣=␣250

• primes␣=␣candidates␣+␣[p]

• while␣candidates:

Solution.
n = 250
primes = []
candidates = list(range(2,n))
while candidates:

p = candidates [0]
primes.append(p)
for nonprime in range(p, n, p):

if nonprime in candidates:
candidates.remove(nonprime)

print(primes)

CHAPTER 3. RUNESTONE TESTING 109

6. Parsons Problem, Mathematical Proof, Numbered Blocks. Cre-
ate a proof of the theorem: If n is an even number, then n ≡ 0 mod 2.
[Ed. This version has numbered blocks, online they are on the right end
of the block.]

1. Click the heels of your ruby slippers together three times.

2. Suppose n is even.

3. (a) Then n is a prime number.
(b) Then there exists an m so that n = 2m.
(c) Then there exists an m so that n = 2m+ 1.

4. Thus n ≡ 0 mod 2.

5. So n = 2m+ 0.
This is a superfluous second paragraph in this block.

Answer. 2, 3b, 5, 4
Solution.

2 Suppose n is even.
3b Then there exists an m so that n = 2m.
5 So n = 2m+ 0.

This is a superfluous second paragraph in this block.
4 Thus n ≡ 0 mod 2.

7. Parsons Problem, Programming. The Sieve of Eratosthenes com-
putes prime numbers by starting with a finite list of the integers bigger
than 1. The first member of the list is a prime and is saved/recorded.
Then all multiples of that prime (which not a prime, excepting the prime
itself!) are removed from the list. Now the first number remaining in the
list is the next prime number. And the process repeats.

The code blocks below can be rearranged to form one of the many
possible programs to implement this algorithm to compute a list of all the
primes less than 250. [Ed. This version has numbered blocks, online they
are on the left end of the block.]

This reprises Exercise I.2.5.1.

1. for nonprime in range(p, n, p):

2. (a) primes = []
candidates = list(range(2,n))

(b) candidates = []
primes = list(range(2,n))

3. p = candidates[0]
primes.append(p)

4. print(primes)

5. if nonprime in candidates:
candidates.remove(nonprime)

6. n = 250

CHAPTER 3. RUNESTONE TESTING 110

7. primes = candidates + [p]

8. while candidates:

Answer. 6, 2a, 8, 3, 1, 5, 4
Solution.

n = 250
primes = []
candidates = list(range(2,n))
while candidates:

p = candidates [0]
primes.append(p)
for nonprime in range(p, n, p):

if nonprime in candidates:
candidates.remove(nonprime)

print(primes)

3.11 Horizontal Parsons Exercises
1. Parsons Problem, SQL statement. Form the SQL statement by re-

arranging the four blocks.

| * | SELECT | test | FROM |

Solution.

SELECT * FROM test

2. Parsons Problem, Python import. This is testing that
horizontal parsons get the default programming language from
docinfo/parsons/@language.

| math | from | pi | import |

Solution.

from math import pi

3. Parsons Problem, SQL statement, no randomization. Form the
SQL statement by rearranging the four blocks. This version of this prob-
lem will always present the blocks in the same fixed order (but incorrect,
hopefully!), as prescribed by the author in the source.

| * | SELECT | test | FROM |

Solution.

SELECT * FROM test

4. Parsons Problem, SQL statement, automatic feedback. Form the
SQL statement by rearranging the four blocks.

| * | SELECT | test | FROM |

Solution.

SELECT * FROM test

CHAPTER 3. RUNESTONE TESTING 111

5. Parsons Problem, Natural Language. Form the sentence often used
to show font samples. You can reuse blocks as needed.

| jumped | brown | fox | dog | over | the | lazy | quick |

Solution.

the quick brown fox jumped over the lazy dog

6. Parsons Problem, Natural Language, with Distractors. Form the
sentence often used to show font samples. Again, but now with distractors.

| jumped | quick | brown | fox | dog | bar | over | the | foo | lazy |

Solution.

the quick brown fox jumped over the lazy dog

7. Parsons Problem, SQL statement, reusable. Form the SQL state-
ment by rearranging the four blocks. Same problem as above, but we allow
blocks to be reused (even though the solution does not require that).

| * | SELECT | test | FROM |

Solution.

SELECT * FROM test

3.12 Matching Exercises
1. Matching Problem, Dates. Match each event in United States history

with the year it happened.

Monroe Doctrine 1803
Haymarket Riot 1863
Louisiana Purchase 1886
Battle of Gettysburg 1823

Solution.

Monroe Doctrine 1823
Haymarket Riot 1886
Louisiana Purchase 1803
Battle of Gettysburg 1863

2. Matching Problem, Derivatives. Match each function with its deriva-
tive.

x3 − 6x2 + 5 3x2 − 12x

x−3 2x+ 2

(x+ 1)2 −3x−4

Solution.

x3 − 6x2 + 5 3x2 − 12x

x−3 −3x−4

(x+ 1)2 2x+ 2

CHAPTER 3. RUNESTONE TESTING 112

3. Matching Problem, Linear Algebra. Match each subspace with a
basis for that subspace. (You may assume that each set is really a basis
for at least one of the subspaces.)

{〈x, y, z〉 | −y + z = 0}
{〈x, y, z〉 | −3x− 5y + z = 0} {〈−4, 3, 3〉, 〈3,−2,−2〉}{〈−4, 3, 3〉, 〈5,−4,−5〉}{〈3,−2,−2〉, 〈5,−4,−5〉}
{〈x, y, z〉 | −2x− 5y + 2z = 0}

Hint. For openers, a basis for a subspace must be a subset of the sub-
space.
Solution.

{〈x, y, z〉 | −y + z = 0} {〈−4, 3, 3〉, 〈3,−2,−2〉}
{〈x, y, z〉 | −3x− 5y + z = 0} {〈−4, 3, 3〉, 〈5,−4,−5〉}
{〈x, y, z〉 | −2x− 5y + 2z = 0} {〈3,−2,−2〉, 〈5,−4,−5〉}

4. Matching Problem, Function Types. Sort the following functions
into their correct categories. [Ed. As of 2024-10-07 the following prob-
lem is not expected to render and function properly. It is here to aid
development work. Nothing to see here.]

y = 5x+ 3πx− 6y =
√
2y = −1

2 x+ e

y = x3 − x

y = 2x

y = x3y =
√
x

Solution.

y = 5x+ 3πx− 6y =
√
2y = −1

2 x+ e Linear
Quadratic

y = x3 − x

y = 2x Exponential
y = x3y =

√
x Power

3.13 Clickable Area Exercises
1. Clickable Areas, “Regular” Text. Identify (by clicking, or by circling)

all of the nouns in this quotation by Eleanor Roosevelt.
“The future belongs to those who believe in the beauty of their

dreams.”
Answer. Correct: future; beauty; dreams. Incorrect: those; their.

The incorrect words are pronouns.
Solution. “The future belongs to those who believe in the beauty of their
dreams.”

2. Clickable Areas, Code. Identify (by clicking, or by circling) all of the
assignment statements in this Python function.

def main():
x = 4
for i in range (5):

y = i
if y > 2:

print(y)

CHAPTER 3. RUNESTONE TESTING 113

Answer. Correct: x = 4; y = i. Incorrect: def main():; if y > 2:.
Remember, the operator = is used for assignment.

3. Clickable Areas, Text in a Table. A two-dimensional array was cre-
ated in Python with the list comprehension:

[[0 for x in range(3)] for y in range(2)]

Then the values were (mostly) changed from zeros and the final array is
shown below.

Identify (by clicking, or by circling) all of the boolean values in the
array.

42 True 'towel'
'true' 0 False

This second table has no <area>, in order to test CSS for tables.

42 True 'towel'
'true' 0 False

Hint. Python boolean variables begin with capital latters.
Answer. Correct: True; False. Incorrect: 'towel'; 'true'.

Python boolean variables are True and False. A value in quotation
marks is a string, not a boolean.
Solution.

42 True 'towel'
'true' 0 False

This second table has no <area>, in order to test CSS for tables.

42 True 'towel'
'true' 0 False

3.14 Select Exercises
1. Mock exercise, just to say this is all testing, 2023-05-19.
2.
3.

3.15 Short Answer Exercises
1. Short Answer. This sample book is configured to make some simple

questions interactive on a capable platform, by adding a <response> ele-
ment as a signal.

3.16 Polling
(2024-04-24) This section is experimental, and may not be fully functional as
you view it. No markup in the source document is final and may change at
any time.

CHAPTER 3. RUNESTONE TESTING 114

We begin with standalone queries, using the <query> element. Runestone
calls these polls. We plan structures/blocks such as <poll>, <survey>, and
<questionnaire>, that will be structured collections of <query>.

Query. In my town, the stoplights have:
1. Solid yellow lights.

2. Yellow lights that are solid left-turn arrows.

3. Yellow lights that are blinking left-turn arrows.

Query. Which of the following is the derivative of f(x) = x4 sin(x)?
1. x5 − cos(x)

2. x4 cos(x) + 4x3 sin(x)

3. 4x3 cos(x)

Query. I like computer science better than mathematics. “1” is “strongly
disagree” and “5” is “strongly agree”.
1 2 3 4 5

Query. How many stuffed animal toys did you own growing up? (Testing an
absurdly large scale, especially in print.)
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37

Query. Which of the following paintings is your favorite?
1. The Calydonian Boar Hunt by Peter Paul Rubens

2. Lucas Cranach’s The fountain of youth (1546)

CHAPTER 3. RUNESTONE TESTING 115

3. William-Adolphe Bouguereau’s Temptation (1880)

3.17 DoenetML
This preliminary DoenetML example is for testing use on a Runestone server,
where it will use the SPLICE protocol to report out events. To the reader, it
should behave identically when not on a Runestone server.

3.18 Fill-In Exercises
1. Fill-In, Integer Answer. The game of bowling uses

pins that you try to knock down.
(This answer blank has been set to be very wide.)
Solution. The game of bowling uses 10 pins that you try to knock
down. (This answer blank has been set to be very wide.)

Arranged in a triangle, there are 1 + 2 + 3 + 4 = 10 pins, a so-called
triangular number.

2. Fill-In, String and Number Answers. Complete the following line
of a Python program so that it will declare an integer variable age with
an initial value of 5. (These two answer blanks have been set to be very
short.)

age = ;

Solution. Complete the following line of a Python program so that it
will declare an integer variable age with an initial value of 5. (These two
answer blanks have been set to be very short.)

int age = 5 ;

CHAPTER 3. RUNESTONE TESTING 116

A variable of type int is appropriate for whole number ages.
An integer variable may be initialized to a value.

3. Fill-In, Case-Insensitive Answer. The word is the opposite of
“yes”. (Try a mixture of upper and lower-case letters.)
Solution. The word no is the opposite of “yes”. (Try a mixture of
upper and lower-case letters.)

4. Fill-In, Decimal Answer. The decimal number is an approxima-
tion of 1/3 to within three significant figures. (Wikipedia1).
Solution. The decimal number 0.333 is an approximation of 1/3 to
within three significant figures. (Wikipedia2).

Any value in the interval 0.333± 0.0005 is correct.
5. Fill-In, New Markup Numbers. I love π. What number am I thinking

of, accurate to two decimal places?

Solution. I love π. What number am I thinking of, accurate to two
decimal places?

3.14
The decimal approximation of π is 3.1415926535 . . ., but to two decimal

places we write 3.14.
6. Fill-In, New Markup Strings. The word I’m thinking about is “magic”.

What word am I thinking about? (Interactive feedback explores
a variety of options: Try what happens if you mix the case, or type in a
number, or include more than the word, or try “pizzazz”.”)
Solution. The word I’m thinking about is “magic”. What word am
I thinking about? magic (Interactive feedback explores a variety of
options: Try what happens if you mix the case, or type in a number, or
include more than the word, or try “pizzazz”.”)

7. Fill-In, Javascript test of numbers. What is an example of a prime
number less than 20?
Solution. What is an example of a prime number less than 20? 13

Any number from the list {2, 3, 5, 7, 11, 13, 17, 19} is a prime number
less than 20.

8. Fill-In, Javascript test of strings. What is an example of a palin-
drome?
Solution. What is an example of a palindrome? radar

Any word that is the same forward and backward is a palindrome.
9. Fill-In, Simple Randomization with Numbers. What is the square

of x = 7? x2 =

Solution. What is the square of x = 7? x2 = 49

10. Fill-In, Dynamic Math with Simple Numerical Answer. Solve the
equation

−2x− 6 = 0

to get the value of x.
x =

Solution 1. Solve the equation

−2x− 6 = 0

1en.wikipedia.org/wiki/Significant_figures
2en.wikipedia.org/wiki/Significant_figures

https://en.wikipedia.org/wiki/Significant_figures
https://en.wikipedia.org/wiki/Significant_figures

CHAPTER 3. RUNESTONE TESTING 117

to get the value of x.
x = −3

Solution 2. We want to isolate the x in the equation −2x − 6 = 0.
Because addition of −6 is the last operation, we apply the inverse by
adding 6 to both sides. The new, but equivalent equation is now −2x = 6.
Dividing both sides of the equation by −2, we obtain the solution x = −3.

11. Fill-In, Dynamic Math with Formulas as Answers. Consider the
function f(x) = −1x5 − 10. Find f ′(x) and f ′′(x).

f ′(x) = and f ′′(x) =

Solution 1. Consider the function f(x) = −1x5 − 10. Find f ′(x) and
f ′′(x).

f ′(x) = −
(
5x4
)

and f ′′(x) = −
(
20x3

)
Solution 2. The derivative of a constant is zero, so d

dx [−10] = 0. The
term x5 is a power, so the power rule gives us d

dx [x
5] = 5x4. Putting this

together, we find f ′(x) = −
(
5x4
)
. Applying the power rule a second time,

we find f ′′(x) = −
(
20x3

)
.

12. Fill-In, Dynamic Math with Interdependent Formula Checking.
Consider the function

h(x) = 4 (−x− 3)
3
+ 5.

Find two nontrivial functions f(x) and g(x) so that h(x) = f(g(x)).
f(x) = and g(x) =

Solution 1. Consider the function

h(x) = 4 (−x− 3)
3
+ 5.

Find two nontrivial functions f(x) and g(x) so that h(x) = f(g(x)).
f(x) = 4x3 + 5 and g(x) = −x− 3

Solution 2. Noticing that the expression −x − 3 appears inside paren-
theses with a power, it makes sense to think of that as the inner function,
defining g(x) = −x−3. The outer function describes what happens to that.
If we imagined replacing the formula −x−3 with a box and then call that
box our variable x, we find the outer function is given by f(x) = 4x3 + 5.

This is not the only non-trivial composition. Can you find others?

3.19 Hodgepodge
1. With Tasks in an Exercises Division. Structured with task, recycled

earlier from earlier, to make sure that the tasks do not get counted as
Runestone reading activities (since they are inside an <exercise> inside
of an <exercises> division.

(a) True/False.
Every vector space has finite dimension.
True or False?

Hint. Pn, the vector space of polynomials with degree at most n,
has dimension n + 1 by Theorem 1.2.16. [Cross-reference is just
a demo, content is not relevant.] What happens if we relax the
defintion and remove the parameter n?

Answer. False.

CHAPTER 3. RUNESTONE TESTING 118

Solution. False.
The vector space of all polynomials with finite degree has a basis,
B = {1, x, x2, x3, . . . }, which is infinte.

(b) Explain your reasoning in the previous question.

3.20 Exercises that are Timed
This is a section that merely explains and holds an <exercises> division, which
will be at the level of a <subsection>. There is a @time-limit attribute on
<exercises>, set to the value 10, which implies (a) the collection of (two)
exercises is a “timed exam” when hosted on Runestone, and (b) a student will
have 10 minutes to complete the collection.

Showing results, showing feedback, displaying a timer, and allowing paus-
ing are all enabled by default. To disable any of these features, set the corre-
sponding attributes on the <exercises> division, @results, @feedback, @timer,
@pause, to the value no. As a test, we have turned off pausing. Don’t panic!

Of course, if you are not viewing this while online and hosted on a Rune-
stone server, then these exercises will not look any different than in other
places.

(Since this is an unstructured division, the number of the <exercises> is
not displayed when born. It does have a number, which is the same as the
enclosing <section>. To wit: Section 3.20 versus Exercises 3.20.)

Timed Exercises
You have 10 minutes to do these exercises when hosted online on a Runestone
server.

1. True/False. Every vector space has finite dimension.
True or False?

Hint. Pn, the vector space of polynomials with degree at most n, has
dimension n+ 1 by Theorem 1.2.16. [Cross-reference is just a demo, con-
tent is not relevant.] What happens if we relax the defintion and remove
the parameter n?
Answer. False.
Solution. False.

The vector space of all polynomials with finite degree has a basis,
B = {1, x, x2, x3, . . . }, which is infinte.

2. Multiple-Choice, Not Randomized, One Answer. What color is a
stop sign?

A. Green

B. Red

C. White

Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.

CHAPTER 3. RUNESTONE TESTING 119

Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

3.21 Projects and Friends
“PROJECT-LIKE” refers to the elements/blocks <project>, <activity>, <activity>,
and <exploration>. They are very similar to <exercise>, and here we stress
that they can be interactive in all the same ways an <exercise> can. Key differ-
ences are that they are blocks, and so are peers of other blocks like paragraphs
and examples, and are children of divisions. By default they have their own
numbering scheme, though we expect this to convert to an elective behavior.

Both <exercise> and PROJECT-LIKE can be structured with <task>. It
would be natural to have a <project> with multiple <task>, each a possibly
different interactive problem type. We expect that to be possible soon. For
now, <exercise> and <project> (and friends) need to be structured with a
<statement> (and their associated signal) in order to be interactive.

Activity 3.21.1 Multiple-Choice, Not Randomized, Multiple An-
swers. Which colors might be found in a rainbow? (Note that the radio
buttons now allow multiple buttons to be selected.)

A. Red

B. Yellow

C. Black

D. Green

Hint. Do you know the acronym…roy g biv for the colors of a rainbow, and
their order?
Answer. A, B, D.
Solution.

A. Correct.
Red is a definitely one of the colors.

B. Correct.
Yes, yellow is correct.

C. Incorrect.
Remember the acronym…roy g biv. “B” stands for blue.

D. Correct.
Yes, green is one of the colors.

Now an <exercise> with three <task>. Since the middle one is a short-
answer question, it will only be interactive on a capable platform.

CHAPTER 3. RUNESTONE TESTING 120

Checkpoint 3.21.1 True/False and Explain. Structured with task, we can
have an introduction, but this does not migrate with the interactive portions.

(a) True/False.
Every vector space has finite dimension.
True or False?

Hint. Pn, the vector space of polynomials with degree at most n, has
dimension n + 1 by Theorem 1.2.16. [Cross-reference is just a demo,
content is not relevant.] What happens if we relax the defintion and
remove the parameter n?

Answer. False.

Solution. False.
The vector space of all polynomials with finite degree has a basis, B =
{1, x, x2, x3, . . . }, which is infinte.

(b) Explain your reasoning in the previous question.

(c) Matching Problem, Dates.
Match each event in United States history with the year it happened. (We
are recycling this to test the static representation of a matching problem
authored inside of <task>.)

Monroe Doctrine 1803
Haymarket Riot 1863
Louisiana Purchase 1886
Battle of Gettysburg 1823

Solution.

Monroe Doctrine 1823
Haymarket Riot 1886
Louisiana Purchase 1803
Battle of Gettysburg 1863

Now an <exploration> nested two-deep with the same two questions, two
times each, just for testing purposes.
Exploration 3.21.2 Exploring Two-Deep.

(a) First Iterations of Each.

(i) Multiple-Choice, Not Randomized, One Answer (First Copy).
What color is a stop sign?
A. Green
B. Red
C. White

Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

CHAPTER 3. RUNESTONE TESTING 121

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warn-
ings.

C. Incorrect.
White might be hard to see.

(ii) Python ActiveCode (First Copy).
Run the following program and observe the information provided at
each step.

for i in range (10):
print(i)

Answer. We’re still not really sure.

(b) Second Iterations of Each.

(i) Multiple-Choice, Not Randomized, One Answer (Second Copy).
What color is a stop sign?
We include a spurious Python <program> element in the <statement>
which should never convert this from a multiple-choice question into
a programming exercise (on any host), but should still get syntax
highlighting as part of rendering the exercise.

sum = 0
sum += 6
for i in range(sum):

print("Hello ,␣World!")

A. Green
B. Red
C. White

Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.
A. Incorrect.

Green means “go!”.
B. Correct.

Red is universally used for prohibited activities or serious warn-
ings.

C. Incorrect.
White might be hard to see.

(ii) Python ActiveCode (Second Copy).
Run the following program and observe the information provided at
each step.

for i in range (10):
print(i)

Answer. We’re still not really sure.
This is an <exercise> which has been structured deeply with <task>. It is

CHAPTER 3. RUNESTONE TESTING 122

here to allow for testing a tabbed viewer presentation in online outputs.
Checkpoint 3.21.2 A very structured exercise. This is an over-arching
introduction to the whole exercise. We follow with some tasks. In interdum
suscipit ullamcorper. Morbi sit amet malesuada augue, id vestibulum magna.
Nulla blandit dui metus, malesuada mollis sapien ullamcorper sit amet. Nulla
at neque nisi. Integer vel porta felis.

(a) A super-simple task.
This first task is very simple, just a paragraph. In interdum suscipit
ullamcorper. Morbi sit amet malesuada augue, id vestibulum magna.
Nulla blandit dui metus, malesuada mollis sapien ullamcorper sit amet.
Nulla at neque nisi. Integer vel porta felis.

(b) Now three paragraphs. In interdum suscipit ullamcorper. Morbi sit amet
malesuada augue, id vestibulum magna. Nulla blandit dui metus, male-
suada mollis sapien ullamcorper sit amet. Nulla at neque nisi. Integer
vel porta felis.
In interdum suscipit ullamcorper. Morbi sit amet malesuada augue, id
vestibulum magna. Nulla blandit dui metus, malesuada mollis sapien
ullamcorper sit amet. Nulla at neque nisi. Integer vel porta felis.
In interdum suscipit ullamcorper. Morbi sit amet malesuada augue, id
vestibulum magna. Nulla blandit dui metus, malesuada mollis sapien
ullamcorper sit amet. Nulla at neque nisi. Integer vel porta felis.

(c) A title of a task that has a subtask with an <answer> for the Solutions.
This second task is further divided by more tasks. This is its introduction.
In interdum suscipit ullamcorper. Morbi sit amet malesuada augue, id
vestibulum magna. Nulla blandit dui metus, malesuada mollis sapien
ullamcorper sit amet. Nulla at neque nisi. Integer vel porta felis.
In interdum suscipit ullamcorper. Morbi sit amet malesuada augue, id
vestibulum magna. Nulla blandit dui metus, malesuada mollis sapien
ullamcorper sit amet. Nulla at neque nisi. Integer vel porta felis.

(i) A task with a title and an <answer> for the Solutions.
A really simple subtask. In interdum suscipit ullamcorper. Morbi sit
amet malesuada augue, id vestibulum magna. Nulla blandit dui me-
tus, malesuada mollis sapien ullamcorper sit amet. Nulla at neque
nisi. Integer vel porta felis.
A short paragraph, before an answer.
Answer. With a proof.
Proof . In interdum suscipit ullamcorper. Morbi sit amet male-
suada augue, id vestibulum magna. Nulla blandit dui metus, male-
suada mollis sapien ullamcorper sit amet. Nulla at neque nisi. Inte-
ger vel porta felis. ■
And a bit more to say.

(ii) A subtask with an answer. In interdum suscipit ullamcorper. Morbi
sit amet malesuada augue, id vestibulum magna. Nulla blandit
dui metus, malesuada mollis sapien ullamcorper sit amet. Nulla
at neque nisi. Integer vel porta felis.
Answer. Right! In interdum suscipit ullamcorper. Morbi sit amet
malesuada augue, id vestibulum magna. Nulla blandit dui metus,

CHAPTER 3. RUNESTONE TESTING 123

malesuada mollis sapien ullamcorper sit amet. Nulla at neque nisi.
Integer vel porta felis.

(iii) Three simple sub-sub-tasks. In interdum suscipit ullamcorper.
Morbi sit amet malesuada augue, id vestibulum magna. Nulla blan-
dit dui metus, malesuada mollis sapien ullamcorper sit amet. Nulla
at neque nisi. Integer vel porta felis.

(A) First subsubtask. Short paragraph.
(B) A second three-deep subsubtask!

Second subsubtask. In interdum suscipit ullamcorper. Morbi
sit amet malesuada augue, id vestibulum magna. Nulla blandit
dui metus, malesuada mollis sapien ullamcorper sit amet. Nulla
at neque nisi. Integer vel porta felis.
In interdum suscipit ullamcorper. Morbi sit amet malesuada
augue, id vestibulum magna. Nulla blandit dui metus, male-
suada mollis sapien ullamcorper sit amet. Nulla at neque nisi.
Integer vel porta felis.

(C) Third subsubtask. In interdum suscipit ullamcorper. Morbi sit
amet malesuada augue, id vestibulum magna. Nulla blandit dui
metus, malesuada mollis sapien ullamcorper sit amet. Nulla at
neque nisi. Integer vel porta felis.
In interdum suscipit ullamcorper
In interdum suscipit ullamcorper. Morbi sit amet malesuada
augue, id vestibulum magna. Nulla blandit dui metus, male-
suada mollis sapien ullamcorper sit amet. Nulla at neque nisi.
Integer vel porta felis.

The conclusion of the structured subtask. In interdum suscipit ul-
lamcorper. Morbi sit amet malesuada augue, id vestibulum magna.
Nulla blandit dui metus, malesuada mollis sapien ullamcorper sit
amet. Nulla at neque nisi. Integer vel porta felis.

(iv) A simple task as the last subtask. In interdum suscipit ullamcorper.
Morbi sit amet malesuada augue, id vestibulum magna. Nulla blan-
dit dui metus, malesuada mollis sapien ullamcorper sit amet. Nulla
at neque nisi. Integer vel porta felis.

This concludes our structured second task. In interdum suscipit ullam-
corper. Morbi sit amet malesuada augue, id vestibulum magna. Nulla
blandit dui metus, malesuada mollis sapien ullamcorper sit amet. Nulla
at neque nisi. Integer vel porta felis.

(d) This third top-level task is intermediate in complexity, you are reading
the statement, which is followed by more items. In interdum suscipit
ullamcorper. Morbi sit amet malesuada augue, id vestibulum magna.
Nulla blandit dui metus, malesuada mollis sapien ullamcorper sit amet.
Nulla at neque nisi. Integer vel porta felis.

Hint. One hint. In interdum suscipit ullamcorper. Morbi sit amet
malesuada augue, id vestibulum magna. Nulla blandit dui metus, male-
suada mollis sapien ullamcorper sit amet. Nulla at neque nisi. Integer
vel porta felis.
In interdum suscipit ullamcorper. Morbi sit amet malesuada augue, id
vestibulum magna. Nulla blandit dui metus, malesuada mollis sapien
ullamcorper sit amet. Nulla at neque nisi. Integer vel porta felis.

Answer 1. First answer. In interdum suscipit ullamcorper.

CHAPTER 3. RUNESTONE TESTING 124

Answer 2. Second answer. In interdum suscipit ullamcorper. Morbi
sit amet malesuada augue, id vestibulum magna. Nulla blandit dui me-
tus, malesuada mollis sapien ullamcorper sit amet. Nulla at neque nisi.
Integer vel porta felis.
In interdum suscipit ullamcorper. Morbi sit amet malesuada augue, id
vestibulum magna. Nulla blandit dui metus, malesuada mollis sapien
ullamcorper sit amet. Nulla at neque nisi. Integer vel porta felis.
In interdum suscipit ullamcorper. Morbi sit amet malesuada augue, id
vestibulum magna. Nulla blandit dui metus, malesuada mollis sapien
ullamcorper sit amet. Nulla at neque nisi. Integer vel porta felis.

Solution. At last, the solution. In interdum suscipit ullamcorper.
Morbi sit amet malesuada augue, id vestibulum magna. Nulla blandit
dui metus, malesuada mollis sapien ullamcorper sit amet. Nulla at neque
nisi. Integer vel porta felis.

This is a conclusion where you could summarize the exercise. In interdum
suscipit ullamcorper. Morbi sit amet malesuada augue, id vestibulum magna.
Nulla blandit dui metus, malesuada mollis sapien ullamcorper sit amet. Nulla
at neque nisi. Integer vel porta felis.

3.22 Expedited Samples
We hack in various interactive Runestone exercise types while PreTeXt markup
evolves to cover more of Runestone’s repertoire. In static output these will just
produce a message. In html they may be interactive simply in a browser, or
they may require being hosted on a Runestone server in order to perform.

CodeLens for a Python program:
Checkpoint 3.22.1 An interactive Runestone problem goes here, but there is
not yet a static representation.

CodeLens for a Java program. Supplied in source with trace data built
beforehand on a Runestone server:
Checkpoint 3.22.2 An interactive Runestone problem goes here, but there is
not yet a static representation.

3.23 Reading Questions
1. This is a simple question. Does this look like a short answer question?

Both questions in this “reading-questions” division should render in
an interactive “short answer” form on a capable platform.
Hint. Shouldn’t be hard!

2. And a second reading question, so we can test having more than one.
Specifically to be certain each goes into the manifest properly. How about
some math now, a2 + b2 = c2. Is that all right?

3.24 YouTube Video Embedding
An <video> can be placed in five different ways:

1. all by itself, as a peer of <p> typically, with layout control,

CHAPTER 3. RUNESTONE TESTING 125

2. inside a <figure>, earning a number and caption,

3. inside a <sidebyside>, with size and layout configured,

4. inside a <figure> inside a <sidebyside>, with size and layout configured,
with a number and caption, and

5. inside a <figure> inside a <sidebyside> inside a <figure>, with size and
layout configured, with a number and caption, but now sub-numbered
((a), (b), (c),…).

Examples of each, and more.
A YouTube video is embedded much differently when hosted on a Runestone

server, so that an api is available to report reader (student) interactions. We
are testing here the various possibilities.

All by itsef, with no layout specified, so showing the default size and place-
ment. Vivamus in congue massa. Morbi condimentum ac magna at accumsan.
Vestibulum ac augue eu lorem semper gravida.

Width set at 40%, so equal margins and thus centered. Aenean faucibus
augue tellus, et sollicitudin tortor finibus non. Maecenas semper dolor quis
diam placerat, iaculis sollicitudin augue finibus. Vestibulum facilisis ligula
lectus, ac tristique nisl aliquet non.

Asymmetric margins of 20% and 40% given, implying 40% width, equal to
previous instance. Vivamus suscipit diam eget mi cursus viverra.

CHAPTER 3. RUNESTONE TESTING 126

As a plain component of a <sidebyside>. Widths here are 20% and 30%,
margins and gaps are automatic, default alignment on top edges. Nulla phare-
tra imperdiet elit, in sodales nibh blandit ultricies. Maecenas efficitur ac felis
ut pharetra.

Inside a <figure> with no adjustments, so default behavior. Note how a
<figure> occupies the entire width of the page, so then does the caption.

Figure 3.24.1 List Variables
Inside a <figure> with asymmetric (large) margins of 30% and 60%. Quisque

finibus augue sit amet facilisis fringilla. Aenean faucibus augue tellus, et sol-
licitudin tortor finibus non.

Figure 3.24.2 List Variables
Inside figures inside a <sidebyside>. Same widths as previous <sidebyside>

but alignment on bottoms of the panels, to partially align captions. Note how
the captions are constrained in width by the width of the panels of the side-
by-side.

CHAPTER 3. RUNESTONE TESTING 127

Figure 3.24.3
List Variables

Figure 3.24.4 List
Variables (Again)

Identical code to previous example, but now wrapped in an overall <figure>,
which has its own caption and number, leaving the interior figures to be sub-
numbered. Cross-references use the full number: Figure 3.24.5(b).

(a) List Vari-
ables (b) List Variables

Figure 3.24.5 Amalgamation of Videos

3.25 Runestone Assignment Testing
This is a section that is specifically for testing when exercises are migrated to
a Runestone Assignment page.

Exercises
1. This is an <exercises> division (at the level of a <subsection>) which

is not being numbered. We’ve hijacked this first exercise to say so, and to
precede the <exercisegroup> following, which is the real test right now.
What is 0 + 0?

An Exercise Group. This introduction should appear ahead of each exercise
when it shows up in the Runestone Assignment page.

(0, 0) (0, 1)

(1, 0) (1, 1)

CHAPTER 3. RUNESTONE TESTING 128

It has a table, and an image too, to check it all comes through.
2. What is 1 + 1?

A. Two

B. Three

Answer. A.
Solution.

A. Correct.

B. Incorrect.
3. What is 2 + 2?

A. Two

B. Four

Answer. B.
Solution.

A. Incorrect.

B. Correct.
4. What is 3 + 3?

And a final paragraph in the section, and a chance to say there is a trailing
<exercise> outside the <exercisegroup>.

CHAPTER 3. RUNESTONE TESTING 129

3.26 A “Group Work” Worksheet
This is a <worksheet> which has a @groupwork attribute set to yes, along with a @label attribute to assist with the Runestone
database. Note, you can also set a @groupsize attribute. When hosted on Runestone, the exercises within will be available
for a group of students to submit together.
1. Multiple-Choice, Group Work. What color is a stop sign?

A. Green

B. Red

C. White

Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

Worksheets allow for material interleaved with the <exercise> throughout.
2. Parsons Problem, Group Work. Create a proof of the theorem: If n is an even number, then n ≡ 0 mod 2.

• Click the heels of your ruby slippers together three times.

• Suppose n is even.

• Either:
Then n is a prime number.
Or:
Then there exists an m so that n = 2m.
Or:
Then there exists an m so that n = 2m+ 1.

• Thus n ≡ 0 mod 2.

• So n = 2m+ 0.
This is a superfluous second paragraph in this block.

• And a little bit of irrelevant multi-line math

c2a2 + b2

x2 + y2.

Solution.

• Suppose n is even.

• Then there exists an m so that n = 2m.

• So n = 2m+ 0.
This is a superfluous second paragraph in this block.

• Thus n ≡ 0 mod 2.

CHAPTER 3. RUNESTONE TESTING 130

3.27 Group Exercises
This is an <exercises> division with no <title>, set as groupwork, and there-
fore its default title will automatically indicate it is meant for a group. Other-
wise, it is not of any new interest.

1. Multiple-Choice, Not Randomized, One Answer. What color is a
stop sign?

A. Green

B. Red

C. White

Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

3.28 Splice Integration
These are examples that use the SPLICE1 protocol for communicating with a
server, such as Runestone. The first uses CodeCheck2. The remaing four are
from the OpenDSA3 project.

They are all integrated into this PreTeXt book as an <interactive> that
uses an @iframe attribute to embed an iframe from some other server.

1cssplice.org/slcp
2codecheck.io
3opendsax.cs.vt.edu

https://cssplice.org/slcp/index.html
https://codecheck.io
https://opendsax.cs.vt.edu/

CHAPTER 3. RUNESTONE TESTING 131

Figure 3.28.1 CodeCheck iframe

Figure 3.28.2 Stack pop slideshow

Figure 3.28.3 A List Insertion Exercise

Figure 3.28.4 A Binary Search Exercise

RUNESTONE TESTING 132

Figure 3.28.5 Dijkstra’s Algorithm Exercise

Appendices

133

Appendix A

Notation

The following table defines the notation used in this book. Page numbers or
references refer to the first appearance of each symbol.

Symbol Description Page

a ∈ A a is in the set A 4
N the natural numbers 5
Z the integers 5
Q the rational numbers 5
R the real numbers 5
C the complex numbers 5
A ⊂ B A is a subset of B 5
∅ the empty set 5
A ∪B the union of sets A and B 5
A ∩B the intersection of sets A and B 5
A′ complement of the set A 6
A \B difference between sets A and B 6
A×B Cartesian product of sets A and B 7
An A× · · · × A (n times) 7
id identity mapping 11
f−1 inverse of the function f 11
a ≡ b (mod n) a is congruent to b modulo n 14
n! n factorial 26(
n
k

)
binomial coefficient n!/(k!(n− k)!) 26

a | b a divides b 28
gcd(a, b) greatest common divisor of a and b 28
P(X) power set of X 37
lcm(m,n) the least common multiple of m and n 38
Zn the integers modulo n 42
U(n) group of units in Zn 49
Mn(R) the n× n matrices with entries in R 49
detA the determinant of A 49
GLn(R) the general linear group 49
Q8 the group of quaternions 50
C∗ the multiplicative group of complex numbers 50
|G| the order of a group 50

(Continued on next page)

134

APPENDIX A. NOTATION 135

Symbol Description Page

R∗ the multiplicative group of real numbers 52
Q∗ the multiplicative group of rational numbers 52
SLn(R) the special linear group 52
Z(G) the center of a group 64
〈a〉 cyclic group generated by a 68
|a| the order of an element a 69
cis θ cos θ + i sin θ 73
T the circle group 74

Appendix B

Hints and Answers to Selected
Odd Exercises

I · Basics
2 · The Integers
2.4 · Exercises
2.4.1. Answer. The base case, S(1) : [1(1+ 1)(2(1)+ 1)]/6 = 1 = 12 is true.

Assume that S(k) : 12 + 22 + · · ·+ k2 = [k(k + 1)(2k + 1)]/6 is true. Then

12 + 22 + · · ·+ k2 + (k + 1)2 = [k(k + 1)(2k + 1)]/6 + (k + 1)2

= [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6,

and so S(k + 1) is true. Thus, S(n) is true for all positive integers n.
2.4.3. Answer. The base case, S(4) : 4! = 24 > 16 = 24 is true. Assume
S(k) : k! > 2k is true. Then (k+1)! = k!(k+1) > 2k · 2 = 2k+1, so S(k+1) is
true. Thus, S(n) is true for all positive integers n.
2.4.9. Hint. Follow the proof in Example 2.1.4.
2.4.11. Hint. The base case, S(0) : (1 + x)0 − 1 = 0 ≥ 0 = 0 · x is true.
Assume S(k) : (1 + x)k − 1 ≥ kx is true. Then

(1 + x)k+1 − 1 = (1 + x)(1 + x)k − 1

= (1 + x)k + x(1 + x)k − 1

≥ kx+ x(1 + x)k

≥ kx+ x

= (k + 1)x,

so S(k + 1) is true. Therefore, S(n) is true for all positive integers n.
2.4.17. Fibonacci Numbers.
Hint. For Item 2.4.17.a and Item 2.4.17.b use mathematical induction.
Item 2.4.17.c Show that f1 = 1, f2 = 1, and fn+2 = fn+1 + fn. Item 2.4.17.d
Use part Item 2.4.17.c. Item 2.4.17.e Use part Item 2.4.17.b and Exercise 2.4.16.
2.4.19. Hint. Use the Fundamental Theorem of Arithmetic.
2.4.23. Hint. Let S = {s ∈ N : a | s, b | s}. Then S 6= ∅, since |ab| ∈ S.
By the Principle of Well-Ordering, S contains a least element m. To show
uniqueness, suppose that a | n and b | n for some n ∈ N. By the division

136

APPENDIX B. HINTS AND ANSWERS TO SELECTED ODD EXERCISES137

algorithm, there exist unique integers q and r such that n = mq + r, where
0 ≤ r < m. Since a and b divide both m, and n, it must be the case that a
and b both divide r. Thus, r = 0 by the minimality of m. Therefore, m | n.
2.4.27. Hint. Since gcd(a, b) = 1, there exist integers r and s such that
ar + bs = 1. Thus, acr + bcs = c. Since a divides both bc and itself, a must
divide c.
2.4.29. Hint. Every prime must be of the form 2, 3, 6n + 1, or 6n + 5.
Suppose there are only finitely many primes of the form 6k + 5.

II · Algebra
1 · Groups
1.5 · Exercises
1.5.1. Hint. (a) 3 + 7Z = {. . . ,−4, 3, 10, . . .}; (c) 18 + 26Z; (e) 5 + 6Z.
1.5.15. Hint. There is a nonabelian group containing six elements.
1.5.17. Hint. The are five different groups of order 8.
1.5.25. Hint.

(aba−1)n = (aba−1)(aba−1) · · · (aba−1)

= ab(aa−1)b(aa−1)b · · · b(aa−1)ba−1

= abna−1.

1.5.31. Hint. Since abab = (ab)2 = e = a2b2 = aabb, we know that ba = ab.
1.5.35. Hint. H1 = {id}, H2 = {id, ρ1, ρ2}, H3 = {id, µ1}, H4 = {id, µ2},
H5 = {id, µ3}, S3.
1.5.41. Hint. The identity of G is 1 = 1 + 0

√
2. Since (a + b

√
2)(c +

d
√
2) = (ac + 2bd) + (ad + bc)

√
2, G is closed under multiplication. Finally,

(a+ b
√
2)−1 = a/(a2 − 2b2)− b

√
2/(a2 − 2b2).

1.5.49. Hint. Since a4b = ba, it must be the case that b = a6b = a2ba, and
we can conclude that ab = a3ba = ba.

1.5.55. Answer. 1 1.5.57. Answer. n

1.5.59.

(a) Answer. 2

(b) (i) Answer. 6

(ii) Answer. 10

3 · Runestone Testing
3.8 · True/False Exercises
3.8.1. True/False.
Hint. Pn, the vector space of polynomials with degree at most n, has dimen-
sion n + 1 by Theorem 1.2.16. [Cross-reference is just a demo, content is not
relevant.] What happens if we relax the defintion and remove the parameter
n?
Answer. False.
Solution. False.

The vector space of all polynomials with finite degree has a basis, B =
{1, x, x2, x3, . . . }, which is infinte.

3.9 · Multiple Choice Exercises

APPENDIX B. HINTS AND ANSWERS TO SELECTED ODD EXERCISES138

3.9.1. Multiple-Choice, Not Randomized, One Answer.
Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

3.9.3. Multiple-Choice, Randomized, One Answer.
Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

3.9.5. Mathematical Multiple-Choice, Not Randomized, Multiple
Answers.
Hint. You can take a derivative on any one of the choices to see if it is
correct or not, rather than using techniques of integration to find a single
correct answer.
Answer. A, B, C.
Solution.

A. Correct.
Remember that when we write +C on an antiderivative that this is the
way we communicate that there are many possible derivatives, but they
all “differ by a constant”.

B. Correct.
The derivative given in the statement of the problem looks exactly like
an application of the chain rule to sin2(x).

C. Correct.
Take a derivative on − cos2(x) to see that this answer is correct. Extra
credit: does this answer “differ by a constant” when subtracted from
either of the other two correct answers?

D. Incorrect.

APPENDIX B. HINTS AND ANSWERS TO SELECTED ODD EXERCISES139

The antiderivative of a product is not the product of the antiderivatives.
Use the product rule to take a derivative and see that this answer is not
correct.

3.10 · Parsons Exercises
3.10.1. Parsons Problem, Mathematical Proof.
Solution.

• Suppose n is even.

• Then there exists an m so that n = 2m.

• So n = 2m+ 0.
This is a superfluous second paragraph in this block.

• Thus n ≡ 0 mod 2.
3.10.3. Parsons Problem, Programming.
Solution.

n = 250
primes = []
candidates = list(range(2,n))
while candidates:

p = candidates [0]
primes.append(p)
for nonprime in range(p, n, p):

if nonprime in candidates:
candidates.remove(nonprime)

print(primes)

3.10.5. Parsons Problem, Programming.
Solution.

n = 250
primes = []
candidates = list(range(2,n))
while candidates:

p = candidates [0]
primes.append(p)
for nonprime in range(p, n, p):

if nonprime in candidates:
candidates.remove(nonprime)

print(primes)

3.10.7. Parsons Problem, Programming.
Answer. 6, 2a, 8, 3, 1, 5, 4
Solution.

n = 250
primes = []
candidates = list(range(2,n))
while candidates:

p = candidates [0]
primes.append(p)
for nonprime in range(p, n, p):

if nonprime in candidates:
candidates.remove(nonprime)

print(primes)

APPENDIX B. HINTS AND ANSWERS TO SELECTED ODD EXERCISES140

3.11 · Horizontal Parsons Exercises
3.11.1. Parsons Problem, SQL statement.
Solution.

SELECT * FROM test

3.11.3. Parsons Problem, SQL statement, no randomization.
Solution.

SELECT * FROM test

3.11.5. Parsons Problem, Natural Language.
Solution.

the quick brown fox jumped over the lazy dog

3.11.7. Parsons Problem, SQL statement, reusable.
Solution.

SELECT * FROM test

3.12 · Matching Exercises
3.12.1. Matching Problem, Dates.
Solution.

Monroe Doctrine 1823
Haymarket Riot 1886
Louisiana Purchase 1803
Battle of Gettysburg 1863

3.12.3. Matching Problem, Linear Algebra.
Hint. For openers, a basis for a subspace must be a subset of the subspace.
Solution.

{〈x, y, z〉 | −y + z = 0} {〈−4, 3, 3〉, 〈3,−2,−2〉}
{〈x, y, z〉 | −3x− 5y + z = 0} {〈−4, 3, 3〉, 〈5,−4,−5〉}
{〈x, y, z〉 | −2x− 5y + 2z = 0} {〈3,−2,−2〉, 〈5,−4,−5〉}

3.13 · Clickable Area Exercises
3.13.1. Clickable Areas, “Regular” Text.
Answer. Correct: future; beauty; dreams. Incorrect: those; their.

The incorrect words are pronouns.
Solution. “The future belongs to those who believe in the beauty of their
dreams.”
3.13.3. Clickable Areas, Text in a Table.
Hint. Python boolean variables begin with capital latters.
Answer. Correct: True; False. Incorrect: 'towel'; 'true'.

Python boolean variables are True and False. A value in quotation marks
is a string, not a boolean.
Solution.

42 True 'towel'
'true' 0 False

This second table has no <area>, in order to test CSS for tables.

APPENDIX B. HINTS AND ANSWERS TO SELECTED ODD EXERCISES141

42 True 'towel'
'true' 0 False

3.18 · Fill-In Exercises
3.18.1. Fill-In, Integer Answer.
Solution. The game of bowling uses 10 pins that you try to knock down.
(This answer blank has been set to be very wide.)

Arranged in a triangle, there are 1 + 2 + 3 + 4 = 10 pins, a so-called
triangular number.
3.18.3. Fill-In, Case-Insensitive Answer.
Solution. The word no is the opposite of “yes”. (Try a mixture of upper
and lower-case letters.)
3.18.5. Fill-In, New Markup Numbers.
Solution. I love π. What number am I thinking of, accurate to two decimal
places?

3.14
The decimal approximation of π is 3.1415926535 . . ., but to two decimal

places we write 3.14.
3.18.7. Fill-In, Javascript test of numbers.
Solution. What is an example of a prime number less than 20? 13

Any number from the list {2, 3, 5, 7, 11, 13, 17, 19} is a prime number less
than 20.
3.18.9. Fill-In, Simple Randomization with Numbers.
Solution. What is the square of x = 7? x2 = 49

3.18.11. Fill-In, Dynamic Math with Formulas as Answers.
Solution 1. Consider the function f(x) = −1x5 − 10. Find f ′(x) and f ′′(x).

f ′(x) = −
(
5x4
)

and f ′′(x) = −
(
20x3

)
Solution 2. The derivative of a constant is zero, so d

dx [−10] = 0. The term
x5 is a power, so the power rule gives us d

dx [x
5] = 5x4. Putting this together,

we find f ′(x) = −
(
5x4
)
. Applying the power rule a second time, we find

f ′′(x) = −
(
20x3

)
.

3.19 · Hodgepodge
3.19.1. With Tasks in an Exercises Division.

(a) True/False.

Hint. Pn, the vector space of polynomials with degree at most n, has
dimension n + 1 by Theorem 1.2.16. [Cross-reference is just a demo,
content is not relevant.] What happens if we relax the defintion and
remove the parameter n?

Answer. False.

Solution. False.
The vector space of all polynomials with finite degree has a basis, B =
{1, x, x2, x3, . . . }, which is infinte.

3.20 · Exercises that are Timed
· Timed Exercises

APPENDIX B. HINTS AND ANSWERS TO SELECTED ODD EXERCISES142

3.20.1. True/False.
Hint. Pn, the vector space of polynomials with degree at most n, has dimen-
sion n + 1 by Theorem 1.2.16. [Cross-reference is just a demo, content is not
relevant.] What happens if we relax the defintion and remove the parameter
n?
Answer. False.
Solution. False.

The vector space of all polynomials with finite degree has a basis, B =
{1, x, x2, x3, . . . }, which is infinte.

3.25 · Runestone Assignment Testing
· Exercises

An Exercise Group.
3.25.3. Answer. B.
Solution.

A. Incorrect.

B. Correct.

3.27 · Group Exercises
3.27.1. Multiple-Choice, Not Randomized, One Answer.
Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

Appendix C

Hints and Answers to Selected
Even Exercises

I · Basics
1 · Preliminaries
1.4 · Exercises

Warm-up

1.4.2. Hint. (a) A×B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)};
(d) A×D = ∅.
1.4.6. Hint. If x ∈ A ∪ (B ∩ C), then either x ∈ A or x ∈ B ∩ C. Thus,
x ∈ A∪B and A∪C. Hence, x ∈ (A∪B)∩ (A∪C). Therefore, A∪ (B ∩C) ⊂
(A ∪ B) ∩ (A ∪ C). Conversely, if x ∈ (A ∪ B) ∩ (A ∪ C), then x ∈ A ∪ B and
A∪C. Thus, x ∈ A or x is in both B and C. So x ∈ A∪ (B∩C) and therefore
(A ∪B) ∩ (A ∪ C) ⊂ A ∪ (B ∩ C). Hence, A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
1.4.10. Hint. (A∩B)∪ (A \B)∪ (B \A) = (A∩B)∪ (A∩B′)∪ (B ∩A′) =
[A ∩ (B ∪B′)] ∪ (B ∩A′) = A ∪ (B ∩A′) = (A ∪B) ∩ (A ∪A′) = A ∪B.
1.4.14. Hint. A \ (B ∪C) = A∩ (B ∪C)′ = (A∩A)∩ (B′ ∩C ′) = (A∩B′)∩
(A ∩ C ′) = (A \B) ∩ (A \ C).

More Exercises

1.4.18. Hint. (a) f is one-to-one but not onto. f(R) = {x ∈ R : x > 0}. (c)
f is neither one-to-one nor onto. f(R) = {x : −1 ≤ x ≤ 1}.
1.4.20. Hint. (a) f(n) = n+ 1.
1.4.22. Hint. (a) Let x, y ∈ A. Then g(f(x)) = (g ◦ f)(x) = (g ◦ f)(y) =
g(f(y)). Thus, f(x) = f(y) and x = y, so g ◦ f is one-to-one. (b) Let c ∈ C,
then c = (g ◦ f)(x) = g(f(x)) for some x ∈ A. Since f(x) ∈ B, g is onto.
1.4.24. Hint. (a) Let y ∈ f(A1 ∪ A2). Then there exists an x ∈ A1 ∪ A2

such that f(x) = y. Hence, y ∈ f(A1) or f(A2). Therefore, y ∈ f(A1)∪ f(A2).
Consequently, f(A1 ∪ A2) ⊂ f(A1) ∪ f(A2). Conversely, if y ∈ f(A1) ∪ f(A2),
then y ∈ f(A1) or f(A2). Hence, there exists an x ∈ A1 or there exists an x ∈
A2 such that f(x) = y. Thus, there exists an x ∈ A1 ∪ A2 such that f(x) = y.
Therefore, f(A1) ∪ f(A2) ⊂ f(A1 ∪A2), and f(A1 ∪A2) = f(A1) ∪ f(A2).

143

APPENDIX C. HINTS AND ANSWERS TO SELECTED EVEN EXERCISES144

1.4.28. Hint. Let X = N ∪ {
√
2 } and define x ∼ y if x+ y ∈ N.

II · Algebra
1 · Groups
1.5 · Exercises
1.5.2. Hint. (a) Not a group; (c) a group.
1.5.6. Hint.

· 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

1.5.8. Hint. Pick two matrices. Almost any pair will work.
1.5.16. Hint. Look at the symmetry group of an equilateral triangle or a
square.
1.5.18. Hint. Let

σ =

(
1 2 · · · n

a1 a2 · · · an

)
be in Sn. All of the ais must be distinct. There are n ways to choose a1, n− 1
ways to choose a2, . . ., 2 ways to choose an−1, and only one way to choose an.
Therefore, we can form σ in n(n− 1) · · · 2 · 1 = n! ways.
1.5.46. Hint. Look at S3.

1.5.56. Answer. 2 1.5.58. Answer. n+ 1

1.5.60.

(a) Answer. 4

(b) (i) Answer. 8

(ii) Answer. 12

3 · Runestone Testing
3.9 · Multiple Choice Exercises
3.9.2. Multiple-Choice, Not Randomized, Multiple Answers.
Hint. Do you know the acronym…roy g biv for the colors of a rainbow, and
their order?
Answer. A, B, D.
Solution.

A. Correct.
Red is a definitely one of the colors.

B. Correct.
Yes, yellow is correct.

C. Incorrect.
Remember the acronym…roy g biv. “B” stands for blue.

D. Correct.
Yes, green is one of the colors.

APPENDIX C. HINTS AND ANSWERS TO SELECTED EVEN EXERCISES145

3.9.4. Multiple-Choice, Randomized, Multiple Answers.
Hint. Do you know the acronym…roy g biv for the colors of a rainbow, and
their order?
Answer. A, B, D.
Solution.

A. Correct.
Red is a definitely one of the colors.

B. Correct.
Yes, yellow is correct.

C. Incorrect.
Remember the acronym…roy g biv. “B” stands for blue.

D. Correct.
Yes, green is one of the colors.

3.10 · Parsons Exercises
3.10.2. Parsons Problem, Partial Ordering.
Solution.

import math
a = 3
b = 4
cSquared = a ** 2 + b ** 2
c = math.sqrt(cSquared)
print(c)

3.10.4. Parsons Problem with executable.
Solution.

def isolateRed(p):
if p.green > p.red or p.blue > p.red:

avg = (p.red + p.blue + p.green) / 3
p.red = avg
p.blue = avg
p.green = avg

3.10.6. Parsons Problem, Mathematical Proof, Numbered Blocks.
Answer. 2, 3b, 5, 4
Solution.

2 Suppose n is even.
3b Then there exists an m so that n = 2m.
5 So n = 2m+ 0.

This is a superfluous second paragraph in this block.
4 Thus n ≡ 0 mod 2.

3.11 · Horizontal Parsons Exercises
3.11.2. Parsons Problem, Python import.
Solution.

from math import pi

APPENDIX C. HINTS AND ANSWERS TO SELECTED EVEN EXERCISES146

3.11.4. Parsons Problem, SQL statement, automatic feedback.
Solution.

SELECT * FROM test

3.11.6. Parsons Problem, Natural Language, with Distractors.
Solution.

the quick brown fox jumped over the lazy dog

3.12 · Matching Exercises
3.12.2. Matching Problem, Derivatives.
Solution.

x3 − 6x2 + 5 3x2 − 12x

x−3 −3x−4

(x+ 1)2 2x+ 2

3.12.4. Matching Problem, Function Types.
Solution.

y = 5x+ 3πx− 6y =
√
2y = −1

2 x+ e Linear
Quadratic

y = x3 − x

y = 2x Exponential
y = x3y =

√
x Power

3.13 · Clickable Area Exercises
3.13.2. Clickable Areas, Code.
Answer. Correct: x = 4; y = i. Incorrect: def main():; if y > 2:.

Remember, the operator = is used for assignment.

3.18 · Fill-In Exercises
3.18.2. Fill-In, String and Number Answers.
Solution. Complete the following line of a Python program so that it will
declare an integer variable age with an initial value of 5. (These two answer
blanks have been set to be very short.)

int age = 5 ;
A variable of type int is appropriate for whole number ages.
An integer variable may be initialized to a value.

3.18.4. Fill-In, Decimal Answer.
Solution. The decimal number 0.333 is an approximation of 1/3 to within
three significant figures. (Wikipedia1).

Any value in the interval 0.333± 0.0005 is correct.
3.18.6. Fill-In, New Markup Strings.
Solution. The word I’m thinking about is “magic”. What word am I thinking
about? magic (Interactive feedback explores a variety of options: Try what
happens if you mix the case, or type in a number, or include more than the
word, or try “pizzazz”.”)
3.18.8. Fill-In, Javascript test of strings.
Solution. What is an example of a palindrome? radar

Any word that is the same forward and backward is a palindrome.

https://en.wikipedia.org/wiki/Significant_figures

APPENDIX C. HINTS AND ANSWERS TO SELECTED EVEN EXERCISES147

3.18.10. Fill-In, Dynamic Math with Simple Numerical Answer.
Solution 1. Solve the equation

−2x− 6 = 0

to get the value of x.
x = −3

Solution 2. We want to isolate the x in the equation −2x− 6 = 0. Because
addition of −6 is the last operation, we apply the inverse by adding 6 to both
sides. The new, but equivalent equation is now −2x = 6. Dividing both sides
of the equation by −2, we obtain the solution x = −3.
3.18.12. Fill-In, Dynamic Math with Interdependent Formula Check-
ing.
Solution 1. Consider the function

h(x) = 4 (−x− 3)
3
+ 5.

Find two nontrivial functions f(x) and g(x) so that h(x) = f(g(x)).
f(x) = 4x3 + 5 and g(x) = −x− 3

Solution 2. Noticing that the expression −x− 3 appears inside parentheses
with a power, it makes sense to think of that as the inner function, defining
g(x) = −x − 3. The outer function describes what happens to that. If we
imagined replacing the formula −x− 3 with a box and then call that box our
variable x, we find the outer function is given by f(x) = 4x3 + 5.

This is not the only non-trivial composition. Can you find others?

3.20 · Exercises that are Timed
· Timed Exercises
3.20.2. Multiple-Choice, Not Randomized, One Answer.
Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

3.25 · Runestone Assignment Testing
· Exercises

An Exercise Group.
3.25.2. Answer. A.
Solution.

A. Correct.

B. Incorrect.

APPENDIX C. HINTS AND ANSWERS TO SELECTED EVEN EXERCISES148

Appendix D

Hints and Answers to Selected
Exercises

I · Basics
1 · Preliminaries
1.4 · Exercises

Warm-up

1.4.2. Hint. (a) A×B = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)};
(d) A×D = ∅.
1.4.6. Hint. If x ∈ A ∪ (B ∩ C), then either x ∈ A or x ∈ B ∩ C. Thus,
x ∈ A∪B and A∪C. Hence, x ∈ (A∪B)∩ (A∪C). Therefore, A∪ (B ∩C) ⊂
(A ∪ B) ∩ (A ∪ C). Conversely, if x ∈ (A ∪ B) ∩ (A ∪ C), then x ∈ A ∪ B and
A∪C. Thus, x ∈ A or x is in both B and C. So x ∈ A∪ (B∩C) and therefore
(A ∪B) ∩ (A ∪ C) ⊂ A ∪ (B ∩ C). Hence, A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
1.4.10. Hint. (A∩B)∪ (A \B)∪ (B \A) = (A∩B)∪ (A∩B′)∪ (B ∩A′) =
[A ∩ (B ∪B′)] ∪ (B ∩A′) = A ∪ (B ∩A′) = (A ∪B) ∩ (A ∪A′) = A ∪B.
1.4.14. Hint. A \ (B ∪C) = A∩ (B ∪C)′ = (A∩A)∩ (B′ ∩C ′) = (A∩B′)∩
(A ∩ C ′) = (A \B) ∩ (A \ C).

More Exercises

1.4.18. Hint. (a) f is one-to-one but not onto. f(R) = {x ∈ R : x > 0}. (c)
f is neither one-to-one nor onto. f(R) = {x : −1 ≤ x ≤ 1}.
1.4.20. Hint. (a) f(n) = n+ 1.
1.4.22. Hint. (a) Let x, y ∈ A. Then g(f(x)) = (g ◦ f)(x) = (g ◦ f)(y) =
g(f(y)). Thus, f(x) = f(y) and x = y, so g ◦ f is one-to-one. (b) Let c ∈ C,
then c = (g ◦ f)(x) = g(f(x)) for some x ∈ A. Since f(x) ∈ B, g is onto.
1.4.24. Hint. (a) Let y ∈ f(A1 ∪ A2). Then there exists an x ∈ A1 ∪ A2

such that f(x) = y. Hence, y ∈ f(A1) or f(A2). Therefore, y ∈ f(A1)∪ f(A2).
Consequently, f(A1 ∪ A2) ⊂ f(A1) ∪ f(A2). Conversely, if y ∈ f(A1) ∪ f(A2),
then y ∈ f(A1) or f(A2). Hence, there exists an x ∈ A1 or there exists an x ∈
A2 such that f(x) = y. Thus, there exists an x ∈ A1 ∪ A2 such that f(x) = y.
Therefore, f(A1) ∪ f(A2) ⊂ f(A1 ∪A2), and f(A1 ∪A2) = f(A1) ∪ f(A2).

149

APPENDIX D. HINTS AND ANSWERS TO SELECTED EXERCISES 150

1.4.28. Hint. Let X = N ∪ {
√
2 } and define x ∼ y if x+ y ∈ N.

2 · The Integers
2.4 · Exercises
2.4.1. Answer. The base case, S(1) : [1(1+ 1)(2(1)+ 1)]/6 = 1 = 12 is true.

Assume that S(k) : 12 + 22 + · · ·+ k2 = [k(k + 1)(2k + 1)]/6 is true. Then

12 + 22 + · · ·+ k2 + (k + 1)2 = [k(k + 1)(2k + 1)]/6 + (k + 1)2

= [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6,

and so S(k + 1) is true. Thus, S(n) is true for all positive integers n.
2.4.3. Answer. The base case, S(4) : 4! = 24 > 16 = 24 is true. Assume
S(k) : k! > 2k is true. Then (k+1)! = k!(k+1) > 2k · 2 = 2k+1, so S(k+1) is
true. Thus, S(n) is true for all positive integers n.
2.4.9. Hint. Follow the proof in Example 2.1.4.
2.4.11. Hint. The base case, S(0) : (1 + x)0 − 1 = 0 ≥ 0 = 0 · x is true.
Assume S(k) : (1 + x)k − 1 ≥ kx is true. Then

(1 + x)k+1 − 1 = (1 + x)(1 + x)k − 1

= (1 + x)k + x(1 + x)k − 1

≥ kx+ x(1 + x)k

≥ kx+ x

= (k + 1)x,

so S(k + 1) is true. Therefore, S(n) is true for all positive integers n.
2.4.17. Fibonacci Numbers.
Hint. For Item 2.4.17.a and Item 2.4.17.b use mathematical induction.
Item 2.4.17.c Show that f1 = 1, f2 = 1, and fn+2 = fn+1 + fn. Item 2.4.17.d
Use part Item 2.4.17.c. Item 2.4.17.e Use part Item 2.4.17.b and Exercise 2.4.16.
2.4.19. Hint. Use the Fundamental Theorem of Arithmetic.
2.4.23. Hint. Let S = {s ∈ N : a | s, b | s}. Then S 6= ∅, since |ab| ∈ S.
By the Principle of Well-Ordering, S contains a least element m. To show
uniqueness, suppose that a | n and b | n for some n ∈ N. By the division
algorithm, there exist unique integers q and r such that n = mq + r, where
0 ≤ r < m. Since a and b divide both m, and n, it must be the case that a
and b both divide r. Thus, r = 0 by the minimality of m. Therefore, m | n.
2.4.27. Hint. Since gcd(a, b) = 1, there exist integers r and s such that
ar + bs = 1. Thus, acr + bcs = c. Since a divides both bc and itself, a must
divide c.
2.4.29. Hint. Every prime must be of the form 2, 3, 6n + 1, or 6n + 5.
Suppose there are only finitely many primes of the form 6k + 5.

II · Algebra
1 · Groups
1.5 · Exercises
1.5.1. Hint. (a) 3 + 7Z = {. . . ,−4, 3, 10, . . .}; (c) 18 + 26Z; (e) 5 + 6Z.
1.5.2. Hint. (a) Not a group; (c) a group.

APPENDIX D. HINTS AND ANSWERS TO SELECTED EXERCISES 151

1.5.6. Hint.
· 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5

11 11 7 5 1

1.5.8. Hint. Pick two matrices. Almost any pair will work.
1.5.15. Hint. There is a nonabelian group containing six elements.
1.5.16. Hint. Look at the symmetry group of an equilateral triangle or a
square.
1.5.17. Hint. The are five different groups of order 8.
1.5.18. Hint. Let

σ =

(
1 2 · · · n

a1 a2 · · · an

)
be in Sn. All of the ais must be distinct. There are n ways to choose a1, n− 1
ways to choose a2, . . ., 2 ways to choose an−1, and only one way to choose an.
Therefore, we can form σ in n(n− 1) · · · 2 · 1 = n! ways.
1.5.25. Hint.

(aba−1)n = (aba−1)(aba−1) · · · (aba−1)

= ab(aa−1)b(aa−1)b · · · b(aa−1)ba−1

= abna−1.

1.5.31. Hint. Since abab = (ab)2 = e = a2b2 = aabb, we know that ba = ab.
1.5.35. Hint. H1 = {id}, H2 = {id, ρ1, ρ2}, H3 = {id, µ1}, H4 = {id, µ2},
H5 = {id, µ3}, S3.
1.5.41. Hint. The identity of G is 1 = 1 + 0

√
2. Since (a + b

√
2)(c +

d
√
2) = (ac + 2bd) + (ad + bc)

√
2, G is closed under multiplication. Finally,

(a+ b
√
2)−1 = a/(a2 − 2b2)− b

√
2/(a2 − 2b2).

1.5.46. Hint. Look at S3.
1.5.49. Hint. Since a4b = ba, it must be the case that b = a6b = a2ba, and
we can conclude that ab = a3ba = ba.

1.5.55. Answer. 1 1.5.56. Answer. 2
1.5.57. Answer. n 1.5.58. Answer. n+ 1

1.5.59.

(a) Answer. 2

(b) (i) Answer. 6

(ii) Answer. 10

1.5.60.

(a) Answer. 4

(b) (i) Answer. 8

(ii) Answer. 12

3 · Runestone Testing
3.8 · True/False Exercises

APPENDIX D. HINTS AND ANSWERS TO SELECTED EXERCISES 152

3.8.1. True/False.
Hint. Pn, the vector space of polynomials with degree at most n, has dimen-
sion n + 1 by Theorem 1.2.16. [Cross-reference is just a demo, content is not
relevant.] What happens if we relax the defintion and remove the parameter
n?
Answer. False.
Solution. False.

The vector space of all polynomials with finite degree has a basis, B =
{1, x, x2, x3, . . . }, which is infinte.

3.9 · Multiple Choice Exercises
3.9.1. Multiple-Choice, Not Randomized, One Answer.
Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

3.9.2. Multiple-Choice, Not Randomized, Multiple Answers.
Hint. Do you know the acronym…roy g biv for the colors of a rainbow, and
their order?
Answer. A, B, D.
Solution.

A. Correct.
Red is a definitely one of the colors.

B. Correct.
Yes, yellow is correct.

C. Incorrect.
Remember the acronym…roy g biv. “B” stands for blue.

D. Correct.
Yes, green is one of the colors.

3.9.3. Multiple-Choice, Randomized, One Answer.
Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

APPENDIX D. HINTS AND ANSWERS TO SELECTED EXERCISES 153

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

3.9.4. Multiple-Choice, Randomized, Multiple Answers.
Hint. Do you know the acronym…roy g biv for the colors of a rainbow, and
their order?
Answer. A, B, D.
Solution.

A. Correct.
Red is a definitely one of the colors.

B. Correct.
Yes, yellow is correct.

C. Incorrect.
Remember the acronym…roy g biv. “B” stands for blue.

D. Correct.
Yes, green is one of the colors.

3.9.5. Mathematical Multiple-Choice, Not Randomized, Multiple
Answers.
Hint. You can take a derivative on any one of the choices to see if it is
correct or not, rather than using techniques of integration to find a single
correct answer.
Answer. A, B, C.
Solution.

A. Correct.
Remember that when we write +C on an antiderivative that this is the
way we communicate that there are many possible derivatives, but they
all “differ by a constant”.

B. Correct.
The derivative given in the statement of the problem looks exactly like
an application of the chain rule to sin2(x).

C. Correct.
Take a derivative on − cos2(x) to see that this answer is correct. Extra
credit: does this answer “differ by a constant” when subtracted from
either of the other two correct answers?

D. Incorrect.
The antiderivative of a product is not the product of the antiderivatives.
Use the product rule to take a derivative and see that this answer is not
correct.

3.10 · Parsons Exercises
3.10.1. Parsons Problem, Mathematical Proof.
Solution.

APPENDIX D. HINTS AND ANSWERS TO SELECTED EXERCISES 154

• Suppose n is even.

• Then there exists an m so that n = 2m.

• So n = 2m+ 0.
This is a superfluous second paragraph in this block.

• Thus n ≡ 0 mod 2.
3.10.2. Parsons Problem, Partial Ordering.
Solution.

import math
a = 3
b = 4
cSquared = a ** 2 + b ** 2
c = math.sqrt(cSquared)
print(c)

3.10.3. Parsons Problem, Programming.
Solution.

n = 250
primes = []
candidates = list(range(2,n))
while candidates:

p = candidates [0]
primes.append(p)
for nonprime in range(p, n, p):

if nonprime in candidates:
candidates.remove(nonprime)

print(primes)

3.10.4. Parsons Problem with executable.
Solution.

def isolateRed(p):
if p.green > p.red or p.blue > p.red:

avg = (p.red + p.blue + p.green) / 3
p.red = avg
p.blue = avg
p.green = avg

3.10.5. Parsons Problem, Programming.
Solution.

n = 250
primes = []
candidates = list(range(2,n))
while candidates:

p = candidates [0]
primes.append(p)
for nonprime in range(p, n, p):

if nonprime in candidates:
candidates.remove(nonprime)

print(primes)

3.10.6. Parsons Problem, Mathematical Proof, Numbered Blocks.
Answer. 2, 3b, 5, 4
Solution.

2 Suppose n is even.

APPENDIX D. HINTS AND ANSWERS TO SELECTED EXERCISES 155

3b Then there exists an m so that n = 2m.
5 So n = 2m+ 0.

This is a superfluous second paragraph in this block.
4 Thus n ≡ 0 mod 2.

3.10.7. Parsons Problem, Programming.
Answer. 6, 2a, 8, 3, 1, 5, 4
Solution.

n = 250
primes = []
candidates = list(range(2,n))
while candidates:

p = candidates [0]
primes.append(p)
for nonprime in range(p, n, p):

if nonprime in candidates:
candidates.remove(nonprime)

print(primes)

3.11 · Horizontal Parsons Exercises
3.11.1. Parsons Problem, SQL statement.
Solution.

SELECT * FROM test

3.11.2. Parsons Problem, Python import.
Solution.

from math import pi

3.11.3. Parsons Problem, SQL statement, no randomization.
Solution.

SELECT * FROM test

3.11.4. Parsons Problem, SQL statement, automatic feedback.
Solution.

SELECT * FROM test

3.11.5. Parsons Problem, Natural Language.
Solution.

the quick brown fox jumped over the lazy dog

3.11.6. Parsons Problem, Natural Language, with Distractors.
Solution.

the quick brown fox jumped over the lazy dog

3.11.7. Parsons Problem, SQL statement, reusable.
Solution.

SELECT * FROM test

3.12 · Matching Exercises
3.12.1. Matching Problem, Dates.
Solution.

APPENDIX D. HINTS AND ANSWERS TO SELECTED EXERCISES 156

Monroe Doctrine 1823
Haymarket Riot 1886
Louisiana Purchase 1803
Battle of Gettysburg 1863

3.12.2. Matching Problem, Derivatives.
Solution.

x3 − 6x2 + 5 3x2 − 12x

x−3 −3x−4

(x+ 1)2 2x+ 2

3.12.3. Matching Problem, Linear Algebra.
Hint. For openers, a basis for a subspace must be a subset of the subspace.
Solution.

{〈x, y, z〉 | −y + z = 0} {〈−4, 3, 3〉, 〈3,−2,−2〉}
{〈x, y, z〉 | −3x− 5y + z = 0} {〈−4, 3, 3〉, 〈5,−4,−5〉}
{〈x, y, z〉 | −2x− 5y + 2z = 0} {〈3,−2,−2〉, 〈5,−4,−5〉}

3.12.4. Matching Problem, Function Types.
Solution.

y = 5x+ 3πx− 6y =
√
2y = −1

2 x+ e Linear
Quadratic

y = x3 − x

y = 2x Exponential
y = x3y =

√
x Power

3.13 · Clickable Area Exercises
3.13.1. Clickable Areas, “Regular” Text.
Answer. Correct: future; beauty; dreams. Incorrect: those; their.

The incorrect words are pronouns.
Solution. “The future belongs to those who believe in the beauty of their
dreams.”
3.13.2. Clickable Areas, Code.
Answer. Correct: x = 4; y = i. Incorrect: def main():; if y > 2:.

Remember, the operator = is used for assignment.
3.13.3. Clickable Areas, Text in a Table.
Hint. Python boolean variables begin with capital latters.
Answer. Correct: True; False. Incorrect: 'towel'; 'true'.

Python boolean variables are True and False. A value in quotation marks
is a string, not a boolean.
Solution.

42 True 'towel'
'true' 0 False

This second table has no <area>, in order to test CSS for tables.

42 True 'towel'
'true' 0 False

3.18 · Fill-In Exercises

APPENDIX D. HINTS AND ANSWERS TO SELECTED EXERCISES 157

3.18.1. Fill-In, Integer Answer.
Solution. The game of bowling uses 10 pins that you try to knock down.
(This answer blank has been set to be very wide.)

Arranged in a triangle, there are 1 + 2 + 3 + 4 = 10 pins, a so-called
triangular number.
3.18.2. Fill-In, String and Number Answers.
Solution. Complete the following line of a Python program so that it will
declare an integer variable age with an initial value of 5. (These two answer
blanks have been set to be very short.)

int age = 5 ;
A variable of type int is appropriate for whole number ages.
An integer variable may be initialized to a value.

3.18.3. Fill-In, Case-Insensitive Answer.
Solution. The word no is the opposite of “yes”. (Try a mixture of upper
and lower-case letters.)
3.18.4. Fill-In, Decimal Answer.
Solution. The decimal number 0.333 is an approximation of 1/3 to within
three significant figures. (Wikipedia1).

Any value in the interval 0.333± 0.0005 is correct.
3.18.5. Fill-In, New Markup Numbers.
Solution. I love π. What number am I thinking of, accurate to two decimal
places?

3.14
The decimal approximation of π is 3.1415926535 . . ., but to two decimal

places we write 3.14.
3.18.6. Fill-In, New Markup Strings.
Solution. The word I’m thinking about is “magic”. What word am I thinking
about? magic (Interactive feedback explores a variety of options: Try what
happens if you mix the case, or type in a number, or include more than the
word, or try “pizzazz”.”)
3.18.7. Fill-In, Javascript test of numbers.
Solution. What is an example of a prime number less than 20? 13

Any number from the list {2, 3, 5, 7, 11, 13, 17, 19} is a prime number less
than 20.
3.18.8. Fill-In, Javascript test of strings.
Solution. What is an example of a palindrome? radar

Any word that is the same forward and backward is a palindrome.
3.18.9. Fill-In, Simple Randomization with Numbers.
Solution. What is the square of x = 7? x2 = 49

3.18.10. Fill-In, Dynamic Math with Simple Numerical Answer.
Solution 1. Solve the equation

−2x− 6 = 0

to get the value of x.
x = −3

Solution 2. We want to isolate the x in the equation −2x− 6 = 0. Because
addition of −6 is the last operation, we apply the inverse by adding 6 to both
sides. The new, but equivalent equation is now −2x = 6. Dividing both sides
of the equation by −2, we obtain the solution x = −3.

https://en.wikipedia.org/wiki/Significant_figures

APPENDIX D. HINTS AND ANSWERS TO SELECTED EXERCISES 158

3.18.11. Fill-In, Dynamic Math with Formulas as Answers.
Solution 1. Consider the function f(x) = −1x5 − 10. Find f ′(x) and f ′′(x).

f ′(x) = −
(
5x4
)

and f ′′(x) = −
(
20x3

)
Solution 2. The derivative of a constant is zero, so d

dx [−10] = 0. The term
x5 is a power, so the power rule gives us d

dx [x
5] = 5x4. Putting this together,

we find f ′(x) = −
(
5x4
)
. Applying the power rule a second time, we find

f ′′(x) = −
(
20x3

)
.

3.18.12. Fill-In, Dynamic Math with Interdependent Formula Check-
ing.
Solution 1. Consider the function

h(x) = 4 (−x− 3)
3
+ 5.

Find two nontrivial functions f(x) and g(x) so that h(x) = f(g(x)).
f(x) = 4x3 + 5 and g(x) = −x− 3

Solution 2. Noticing that the expression −x− 3 appears inside parentheses
with a power, it makes sense to think of that as the inner function, defining
g(x) = −x − 3. The outer function describes what happens to that. If we
imagined replacing the formula −x− 3 with a box and then call that box our
variable x, we find the outer function is given by f(x) = 4x3 + 5.

This is not the only non-trivial composition. Can you find others?

3.19 · Hodgepodge
3.19.1. With Tasks in an Exercises Division.

(a) True/False.

Hint. Pn, the vector space of polynomials with degree at most n, has
dimension n + 1 by Theorem 1.2.16. [Cross-reference is just a demo,
content is not relevant.] What happens if we relax the defintion and
remove the parameter n?

Answer. False.

Solution. False.
The vector space of all polynomials with finite degree has a basis, B =
{1, x, x2, x3, . . . }, which is infinte.

3.20 · Exercises that are Timed
· Timed Exercises
3.20.1. True/False.
Hint. Pn, the vector space of polynomials with degree at most n, has dimen-
sion n + 1 by Theorem 1.2.16. [Cross-reference is just a demo, content is not
relevant.] What happens if we relax the defintion and remove the parameter
n?
Answer. False.
Solution. False.

The vector space of all polynomials with finite degree has a basis, B =
{1, x, x2, x3, . . . }, which is infinte.
3.20.2. Multiple-Choice, Not Randomized, One Answer.
Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?

APPENDIX D. HINTS AND ANSWERS TO SELECTED EXERCISES 159

Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

3.25 · Runestone Assignment Testing
· Exercises

An Exercise Group.
3.25.2. Answer. A.
Solution.

A. Correct.

B. Incorrect.
3.25.3. Answer. B.
Solution.

A. Incorrect.

B. Correct.

3.27 · Group Exercises
3.27.1. Multiple-Choice, Not Randomized, One Answer.
Hint 1. What did you see last time you went driving?
Hint 2. Maybe go out for a drive?
Answer. B.
Solution.

A. Incorrect.
Green means “go!”.

B. Correct.
Red is universally used for prohibited activities or serious warnings.

C. Incorrect.
White might be hard to see.

Appendix E

A Structured Appendix

A deeply-structured appendix for testing purposes.

E.1 A Section in an Appendix
Inside a section.

E.1.1 A Subsection in a Section in an Appendix
Inside a subsection.

E.1.1.1 A Subsubsection in a Subsection in a Section in an Ap-
pendix

Nearly terminal.

Paragraphs in a Subsubsection in a Subsection in a Section in an
Appendix. The paragraphs element can go in any division, but does not
get a number.

E.2 Numbering in the Back Matter
Numbered blocks in an <appendix> in the <backmatter> of a <book> with
<part> were once getting an extra level in html output. With standard de-
faults, the number of the following <example> should have two periods as sep-
arators, just like an example in the main matter when the part number is not
included.
Example E.2.1 An Example Example. What’s my number? □

160

Appendix F

GNU Free Documentation Li-
cense

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://www.fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE. The purpose of this License is to make a manual, text-
book, or other functional and useful document “free” in the sense of freedom:
to assure everyone the effective freedom to copy and redistribute it, with or
without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS. This License applies to
any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

161

http://www.fsf.org/

APPENDIX F. GNU FREE DOCUMENTATION LICENSE 162

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related mat-
ters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Sec-
tion may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary for-
mats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the
Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers

APPENDIX F. GNU FREE DOCUMENTATION LICENSE 163

are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING. You may copy and distribute the Document
in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY. If you publish printed copies (or copies
in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they
preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus ac-
cessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS. You may copy and distribute a Modified Version
of the Document under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if

APPENDIX F. GNU FREE DOCUMENTATION LICENSE 164

there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities re-
sponsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you
from this requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications
given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not con-
sidered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

APPENDIX F. GNU FREE DOCUMENTATION LICENSE 165

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties — for ex-
ample, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS. You may combine the Document with
other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS. You may make a collection
consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS. A compila-
tion of the Document or its derivatives with other separate and independent

APPENDIX F. GNU FREE DOCUMENTATION LICENSE 166

documents or works, in or on a volume of a storage or distribution medium, is
called an “aggregate” if the copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License
does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION. Translation is considered a kind of modification, so
you may distribute translations of the Document under the terms of section
4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION. You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and will auto-
matically terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated per-
manently if the copyright holder notifies you of the violation by some reasonable
means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses
of parties who have received copies or rights from you under this License. If
your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE. The Free Software
Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or

http://www.gnu.org/copyleft/

APPENDIX F. GNU FREE DOCUMENTATION LICENSE 167

any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.
If the Document specifies that a proxy can decide which future versions of this
License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING. “Massive Multiauthor Collaboration Site” (or “MMC
Site”) means any World Wide Web server that publishes copyrightable works
and also provides prominent facilities for anybody to edit those works. A pub-
lic wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set
of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit corpora-
tion with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and
if all works that were first published under this License somewhere other than
this MMC, and subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were thus incorporated
prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009, provided
the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents. To use
this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the
title page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, re-
place the “with… Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination
of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

Index

nth root of unity, 74

Abelian group, 48
Ackermann’s function, 39
Algorithm

Euclidean, 30

Binary operation, 47
Burnside, William, 52

Cancellation law
for groups, 51

Cayley table, 48
Composite integer, 30
Congruence modulo n, 14
Conjugate, complex, 71

De Morgan’s laws
for sets, 7

DeMoivre’s Theorem, 73
Division algorithm

for integers, 28

Element
identity, 48
inverse, 48
order of, 69

Equivalence class, 14
Equivalence relation, 12
Euclidean algorithm, 30
even numbers, 105, 109, 129

Function
bijective, 9
composition of, 9
definition of, 7
domain of, 8
identity, 11
injective, 9
invertible, 11
one-to-one, 9
onto, 9

range of, 8
surjective, 9

Fundamental Theorem
of Arithmetic, 30

Galois, Évariste, 52
Generator of a cyclic subgroup, 69
Greatest common divisor

of two integers, 28
Group

abelian, 48
circle, 74
commutative, 48
cyclic, 69
definition of, 47
finite, 50
general linear, 49
infinite, 50
nonabelian, 48
noncommutative, 48
of units, 49
order of, 50
quaternion, 50
special linear, 53

group work, 129
groupwork, 129

Induction
first principle of, 26
second principle of, 27

International standard book
number, 66

Klein, Felix, 52

Lagrange, Joseph-Louis, 52
Lie, Sophus, 52
Linear transformation

definition of, 10

Mapping, see Function

168

INDEX 169

matching bases and subspaces, 112
matching derivatives, 111
matching function types, 112
matching US dates, 111
Matrix

similar, 13

Partitions, 14
Permutation

definition of, 10
Prime integer, 30
prime numbers, 106, 108, 109
Primitive nth root of unity, 74

Quaternions, 50

Rigid motion, 45

Sieve of Eratosthenes, 39, 106, 108,
109

stop signs, 103, 104, 118, 119, 129,
130

Subgroup
cyclic, 69
definition of, 52
proper, 52
trivial, 52

Universal Product Code, 65

vector space, 102, 118

Well-defined map, 9
Well-ordered set, 27

Colophon
This book was authored in MathBook XML.

	Acknowledgements
	Preface
	Contributors to the 4th Edition
	Basics
	Preliminaries
	The Integers

	Algebra
	Groups
	Cyclicity
	Runestone Testing

	Appendices
	Notation
	Hints and Answers to Selected Odd Exercises
	Hints and Answers to Selected Even Exercises
	Hints and Answers to Selected Exercises
	A Structured Appendix
	GNU Free Documentation License

	Back Matter
	Index

