Skip to main content
Logo image

PreTeXt Sample Book: Abstract Algebra (SAMPLE ONLY)

Appendix C Hints and Answers to Selected Even Exercises

1 Preliminaries
1.4 Exercises

Warm-up

1.4.2.
Hint.
(a) \(A \times B = \{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3), (c,1), (c,2), (c,3) \}\text{;}\) (d) \(A \times D = \emptyset\text{.}\)
1.4.6.
Hint.
If \(x \in A \cup (B \cap C)\text{,}\) then either \(x \in A\) or \(x \in B \cap C\text{.}\) Thus, \(x \in A \cup B\) and \(A \cup C\text{.}\) Hence, \(x \in (A \cup B) \cap (A \cup C)\text{.}\) Therefore, \(A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)\text{.}\) Conversely, if \(x \in (A \cup B) \cap (A \cup C)\text{,}\) then \(x \in A \cup B\) and \(A \cup C\text{.}\) Thus, \(x \in A\) or \(x\) is in both \(B\) and \(C\text{.}\) So \(x \in A \cup (B \cap C)\) and therefore \((A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)\text{.}\) Hence, \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\text{.}\)
1.4.10.
Hint.
\((A \cap B) \cup (A \setminus B) \cup (B \setminus A) = (A \cap B) \cup (A \cap B') \cup (B \cap A') = [A \cap (B \cup B')] \cup (B \cap A') = A \cup (B \cap A') = (A \cup B) \cap (A \cup A') = A \cup B\text{.}\)
1.4.14.
Hint.
\(A \setminus (B \cup C) = A \cap (B \cup C)' = (A \cap A) \cap (B' \cap C') = (A \cap B') \cap (A \cap C') = (A \setminus B) \cap (A \setminus C)\text{.}\)

More Exercises

1.4.18.
Hint.
(a) \(f\) is one-to-one but not onto. \(f({\mathbb R} ) = \{ x \in {\mathbb R} : x \gt 0 \}\text{.}\) (c) \(f\) is neither one-to-one nor onto. \(f(\mathbb R) = \{ x : -1 \leq x \leq 1 \}\text{.}\)
1.4.20.
Hint.
(a) \(f(n) = n + 1\text{.}\)
1.4.22.
Hint.
(a) Let \(x, y \in A\text{.}\) Then \(g(f(x)) = (g \circ f)(x) = (g \circ f)(y) = g(f(y))\text{.}\) Thus, \(f(x) = f(y)\) and \(x = y\text{,}\) so \(g \circ f\) is one-to-one. (b) Let \(c \in C\text{,}\) then \(c = (g \circ f)(x) = g(f(x))\) for some \(x \in A\text{.}\) Since \(f(x) \in B\text{,}\) \(g\) is onto.
1.4.24.
Hint.
(a) Let \(y \in f(A_1 \cup A_2)\text{.}\) Then there exists an \(x \in A_1 \cup A_2\) such that \(f(x) = y\text{.}\) Hence, \(y \in f(A_1)\) or \(f(A_2) \text{.}\) Therefore, \(y \in f(A_1) \cup f(A_2)\text{.}\) Consequently, \(f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)\text{.}\) Conversely, if \(y \in f(A_1) \cup f(A_2)\text{,}\) then \(y \in f(A_1)\) or \(f(A_2)\text{.}\) Hence, there exists an \(x \in A_1\) or there exists an \(x \in A_2\) such that \(f(x) = y\text{.}\) Thus, there exists an \(x \in A_1 \cup A_2\) such that \(f(x) = y\text{.}\) Therefore, \(f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)\text{,}\) and \(f(A_1 \cup A_2) = f(A_1) \cup f(A_2)\text{.}\)
1.4.28.
Hint.
Let \(X = {\mathbb N} \cup \{ \sqrt{2}\, \}\) and define \(x \sim y\) if \(x + y \in {\mathbb N}\text{.}\)

3 Groups
3.5 Exercises

3.5.2.

Hint.
(a) Not a group; (c) a group.

3.5.6.

Hint.
\begin{equation*} \begin{array}{c|cccc} \cdot & 1 & 5 & 7 & 11 \\ \hline 1 & 1 & 5 & 7 & 11 \\ 5 & 5 & 1 & 11 & 7 \\ 7 & 7 & 11 & 1 & 5 \\ 11 & 11 & 7 & 5 & 1 \end{array} \end{equation*}

3.5.8.

Hint.
Pick two matrices. Almost any pair will work.

3.5.16.

Hint.
Look at the symmetry group of an equilateral triangle or a square.

3.5.18.

Hint.
Let
\begin{equation*} \sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ a_1 & a_2 & \cdots & a_n \end{pmatrix} \end{equation*}
be in \(S_n\text{.}\) All of the \(a_i\)s must be distinct. There are \(n\) ways to choose \(a_1\text{,}\) \(n-1\) ways to choose \(a_2\text{,}\) \(\ldots\text{,}\) 2 ways to choose \(a_{n - 1}\text{,}\) and only one way to choose \(a_n\text{.}\) Therefore, we can form \(\sigma\) in \(n(n - 1) \cdots 2 \cdot 1 = n!\) ways.

3.5.46.

Hint.
Look at \(S_3\text{.}\)

3.5.56.

Answer.
\(2\)

3.5.58.

Answer.
\(n+1\)

3.5.60.

3.5.60.a
Answer.
\(4\)
3.5.60.b
3.5.60.b.i
Answer.
\(8\)
3.5.60.b.ii
Answer.
\(12\)

5 Runestone Testing
5.8 Multiple Choice Exercises

5.8.2. Multiple-Choice, Not Randomized, Multiple Answers.

Hint.
Do you know the acronym…ROY G BIV for the colors of a rainbow, and their order?

5.8.4. Multiple-Choice, Randomized, Multiple Answers.

Hint.
Do you know the acronym…ROY G BIV for the colors of a rainbow, and their order?

5.9 Parsons Exercises

5.9.6. Parsons Problem, Mathematical Proof, Numbered Blocks.

Hint.
Dorothy will not be much help with this proof.

5.17 Fill-In Exercises

5.17.10. Fill-In, Dynamic Math with Simple Numerical Answer.

5.17.12. Fill-In, Dynamic Math with Interdependent Formula Checking.

5.19 Exercises that are Timed

Timed Exercises

5.19.2. Multiple-Choice, Not Randomized, One Answer.
Hint 1.
What did you see last time you went driving?
Hint 2.
Maybe go out for a drive?