Appendix A Notation
The following table defines the notation used in this book. Page numbers or references refer to the first appearance of each symbol.
| Symbol | Description | Location | 
|---|---|---|
| \(a \in A\) | \(a\) is in the set \(A\) | Paragraph | 
| \({\mathbb N}\) | the natural numbers | Paragraph | 
| \({\mathbb Z}\) | the integers | Paragraph | 
| \({\mathbb Q}\) | the rational numbers | Paragraph | 
| \({\mathbb R}\) | the real numbers | Paragraph | 
| \({\mathbb C}\) | the complex numbers | Paragraph | 
| \(A \subset B\) | \(A\) is a subset of \(B\) | Paragraph | 
| \(\emptyset\) | the empty set | Paragraph | 
| \(A \cup B\) | the union of sets \(A\) and \(B\) | Paragraph | 
| \(A \cap B\) | the intersection of sets \(A\) and \(B\) | Paragraph | 
| \(A'\) | complement of the set \(A\) | Paragraph | 
| \(A \setminus B\) | difference between sets \(A\) and \(B\) | Paragraph | 
| \(A \times B\) | Cartesian product of sets \(A\) and \(B\) | Paragraph | 
| \(A^n\) | \(A \times \cdots \times A\) (\(n\) times) | Paragraph | 
| \(id\) | identity mapping | Paragraph | 
| \(f^{-1}\) | inverse of the function \(f\) | Paragraph | 
| \(a \equiv b \pmod{n}\) | \(a\) is congruent to \(b\) modulo \(n\) | Example 1.2.30 | 
| \(n!\) | \(n\) factorial | Example 2.1.4 | 
| \(\binom{n}{k}\) | binomial coefficient \(n!/(k!(n-k)!)\) | Example 2.1.4 | 
| \(a \mid b\) | \(a\) divides \(b\) | Paragraph | 
| \(\gcd(a, b)\) | greatest common divisor of \(a\) and \(b\) | Paragraph | 
| \(\mathcal P(X)\) | power set of \(X\) | Exercise 2.4.12 | 
| \(\lcm(m,n)\) | the least common multiple of \(m\) and \(n\) | Exercise 2.4.23 | 
| \(\mathbb Z_n\) | the integers modulo \(n\) | Paragraph | 
| \(U(n)\) | group of units in \(\mathbb Z_n\) | Example 3.2.4 | 
| \(\mathbb M_n(\mathbb R)\) | the \(n \times n\) matrices with entries in \(\mathbb R\) | Example 3.2.7 | 
| \(\det A\) | the determinant of \(A\) | Example 3.2.7 | 
| \(GL_n(\mathbb R)\) | the general linear group | Example 3.2.7 | 
| \(Q_8\) | the group of quaternions | Example 3.2.8 | 
| \(\mathbb C^*\) | the multiplicative group of complex numbers | Example 3.2.9 | 
| \(|G|\) | the order of a group | Paragraph | 
| \(\mathbb R^*\) | the multiplicative group of real numbers | Example 3.3.1 | 
| \(\mathbb Q^*\) | the multiplicative group of rational numbers | Example 3.3.1 | 
| \(SL_n(\mathbb R)\) | the special linear group | Example 3.3.3 | 
| \(Z(G)\) | the center of a group | Exercise 3.5.48 | 
| \(\langle a \rangle\) | cyclic group generated by \(a\) | Theorem 4.1.3 | 
| \(|a|\) | the order of an element \(a\) | Paragraph | 
| \(\cis \theta\) | \(\cos \theta + i \sin \theta\) | Paragraph | 
| \(\mathbb T\) | the circle group | Paragraph | 
