Appendix A Hints, Answers, and Solutions
1 Instructive Examples
1.1 Arithmetic
Checkpoint 1.1.2. Declaring a Problem Seed.
Checkpoint 1.1.3. Controlling Randomness.
Checkpoint 1.1.4. Special Answer Checking.
Checkpoint 1.1.5. Using Hints.
Checkpoint 1.1.6. No Randomization.
1.2 The Quadratic Formula
Checkpoint 1.2.2. Solving Quadratic Equations.
Solution.
Recall that the quadratic formula is given in TheoremΒ 1.2.1.
You already identified \(a = {5}\text{,}\) \(b = {-6}\text{,}\) and \(c = {-8}\text{,}\) so the results are:
\begin{equation*}
x = {\frac{-\left(-6\right)+\sqrt{\left(-6\right)^{2}-4\cdot 5\cdot \left(-8\right)}}{2\cdot 5}} = {2}
\end{equation*}
or
\begin{equation*}
x = {\frac{-\left(-6\right)-\sqrt{\left(-6\right)^{2}-4\cdot 5\cdot \left(-8\right)}}{2\cdot 5}} = {-{\frac{4}{5}}}
\end{equation*}
Checkpoint 1.2.3. Nested tasks.
Solution.
Recall that the quadratic formula is given in TheoremΒ 1.2.1.
You already identified \(a = {6}\text{,}\) \(b = {-31}\text{,}\) and \(c = {-30}\text{,}\) so the results are:
\begin{equation*}
x = {\frac{-\left(-31\right)+\sqrt{\left(-31\right)^{2}-4\cdot 6\cdot \left(-30\right)}}{2\cdot 6}} = {6}
\end{equation*}
or
\begin{equation*}
x = {\frac{-\left(-31\right)-\sqrt{\left(-31\right)^{2}-4\cdot 6\cdot \left(-30\right)}}{2\cdot 6}} = {-{\frac{5}{6}}}
\end{equation*}
Checkpoint 1.2.4. Copy a Problem with Tasks.
Solution.
Recall that the quadratic formula is given in TheoremΒ 1.2.1.
You already identified \(a = {2}\text{,}\) \(b = {-5}\text{,}\) and \(c = {-25}\text{,}\) so the results are:
\begin{equation*}
x = {\frac{-\left(-5\right)+\sqrt{\left(-5\right)^{2}-4\cdot 2\cdot \left(-25\right)}}{2\cdot 2}} = {5}
\end{equation*}
or
\begin{equation*}
x = {\frac{-\left(-5\right)-\sqrt{\left(-5\right)^{2}-4\cdot 2\cdot \left(-25\right)}}{2\cdot 2}} = {-{\frac{5}{2}}}
\end{equation*}
1.3 Open Problem Library
Checkpoint 1.3.1. Cylinder Volume.
Solution.
A cylinderβs volume formula is \(V= (\text{base area}) \cdot \text{height}\text{.}\) A cylinderβs base is a circle, with its area formula \(A = \pi r^{2}\text{.}\)
Putting together these two formulas, we have a cylinderβs volume formula:
\(\displaystyle{ V= \pi r^{2} h }\)
Throughout these computations, all quantities have units attached, and we only show them in the final step.
-
Using the volume formula, we have:\(\displaystyle{\begin{aligned} V \amp = \pi r^{2} h \\ \amp = \pi \cdot 6^{2} \cdot 10 \\ \amp = \pi \cdot 360 \\ \amp = 360 \pi \textrm{ m}^3 \end{aligned}}\)Donβt forget the volume unit \(\textrm{m}^3\text{.}\)
-
To find the decimal version, we replace \(\pi\) with its decimal value, and we have:\(\displaystyle{\begin{aligned}[t] V\amp = 360 \pi \\ \amp \approx 360 \cdot 3.14\ldots \\ \amp \approx {1130.97\ {\rm m^{3}}} \end{aligned}}\)Donβt forget the volume unit \(\textrm{m}^3\text{.}\)
1.4 Antidifferentiation
1.4.2 WeBWorK Exercises
1.4.2.1. Antiderivatives.
1.4.2.6. Show Your Work.
1.6 Multiple Choice
Checkpoint 1.6.1. Drop-down/Popup.
Solution.
If \(\sqrt{2}\) were rational, then \(\sqrt{2}=\frac{p}{q}\text{,}\) with \(p\) and \(q\) coprime. But then \(2q^2=p^2\text{.}\) By the Fundamental Theorem of Arithmetic, the power of \(2\) dividing the left side is odd, while the power of \(2\) dividing the right side is even. This is a contradiction, so \(\sqrt{2}\) is not rational.
β1β
en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic#Canonical_representation_of_a_positive_integer