Skip to main content
Logo image

PreTeXt Sample Book: Abstract Algebra (SAMPLE ONLY)

Exercises 3.7 True/False Exercises

View Source

1. True/False.

    Every vector space has finite dimension.
  • True.

  • The vector space of all polynomials with finite degree has a basis, \(B = \{1,x,x^2,x^3,\dots\}\text{,}\) which is infinte.
  • False.

  • The vector space of all polynomials with finite degree has a basis, \(B = \{1,x,x^2,x^3,\dots\}\text{,}\) which is infinte.
Hint.
\(P_n\text{,}\) the vector space of polynomials with degree at most \(n\text{,}\) has dimension \(n+1\) by Theorem 1.2.16. [Cross-reference is just a demo, content is not relevant.] What happens if we relax the defintion and remove the parameter \(n\text{?}\)