Skip to main content Contents Index
Prev Up Next Scratch ActiveCode \(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{{\not{\mid}}}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
Exercises 3.7 True/False Exercises
1. True/False.
Every vector space has finite dimension.
True.
The vector space of all polynomials with finite degree has a basis, \(B = \{1,x,x^2,x^3,\dots\}\text{,}\) which is infinte.
False.
The vector space of all polynomials with finite degree has a basis, \(B = \{1,x,x^2,x^3,\dots\}\text{,}\) which is infinte.
Hint .
\(P_n\text{,}\) the vector space of polynomials with degree at most
\(n\text{,}\) has dimension
\(n+1\) by
Theorem 1.2.16 . [Cross-reference is just a demo, content is not relevant.] What happens if we relax the defintion and remove the parameter
\(n\text{?}\)