<worksheet groupwork="yes" groupsize="2" label="worksheet-groupwork">
<title>A
<q>Group Work</q>
Worksheet</title>
<p>
This is a <tag>worksheet</tag> which has a <attr>groupwork</attr> attribute set to <c>yes</c>,
along with a <attr>label</attr> attribute to assist with the Runestone database.
Note, you can also set a <attr>groupsize</attr> attribute.
When hosted on Runestone,
the exercises within will be available for a group of students to submit together.
</p>
<exercise label="groupwork-multiple-choice">
<title>Multiple-Choice, Group Work</title>
<idx>stop signs</idx>
<idx>group work</idx>
<statement>
<p>
What color is a stop sign?
</p>
</statement>
<choices>
<choice>
<statement>
<p>
Green
</p>
</statement>
<feedback>
<p>
Green means
<q>go!</q>.
</p>
</feedback>
</choice>
<choice correct="yes">
<statement>
<p>
Red
</p>
</statement>
<feedback>
<p>
Red is universally used for prohibited activities or serious warnings.
</p>
</feedback>
</choice>
<choice>
<statement>
<p>
White
</p>
</statement>
<feedback>
<p>
White might be hard to see.
</p>
</feedback>
</choice>
</choices>
<hint>
<p>
What did you see last time you went driving?
</p>
</hint>
<hint>
<p>
Maybe go out for a drive?
</p>
</hint>
</exercise>
<p>
Worksheets allow for material interleaved with the <tag>exercise</tag> throughout.
</p>
<exercise label="groupwork-number-theory" adaptive="yes" language="natural">
<title>Parsons Problem, Group Work</title>
<idx>even numbers</idx>
<idx>groupwork</idx>
<statement>
<p>
Create a proof of the theorem: If <m>n</m> is an even number,
then <m>n\equiv 0\mod 2</m>.
</p>
</statement>
<blocks>
<block order="2">
<p>
Suppose <m>n</m> is even.
</p>
</block>
<block order="3">
<choice>
<p>
Then <m>n</m> is a prime number.
</p>
</choice>
<choice correct="yes">
<p>
Then there exists an <m>m</m> so that <m>n = 2m</m>.
</p>
</choice>
<choice>
<p>
Then there exists an <m>m</m> so that <m>n = 2m + 1</m>.
</p>
</choice>
</block>
<block order="1" correct="no">
<p>
Click the heels of your ruby slippers together three times.
</p>
</block>
<block order="5">
<p>
So <m>n = 2m + 0</m>.
</p>
<p>
This is a superfluous second paragraph in this block.
</p>
</block>
<block order="4">
<p>
Thus <m>n\equiv 0\mod 2</m>.
</p>
</block>
<block order="6" correct="no">
<p>
And a little bit of irrelevant multi-line math
<md>
<mrow>c^2&a^2+b^2</mrow>
<mrow>&x^2+y^2</mrow>
</md>.
</p>
</block>
</blocks>
<hint>
<p>
Dorothy will not be much help with this proof.
</p>
</hint>
</exercise>
</worksheet>
Worksheet 3.26 A “Group Work” Worksheet
View Source for worksheet
This is a
<worksheet>
which has a @groupwork
attribute set to yes
, along with a @label
attribute to assist with the Runestone database. Note, you can also set a @groupsize
attribute. When hosted on Runestone, the exercises within will be available for a group of students to submit together.1. Multiple-Choice, Group Work.
View Source for exercise
<exercise label="groupwork-multiple-choice">
<title>Multiple-Choice, Group Work</title>
<idx>stop signs</idx>
<idx>group work</idx>
<statement>
<p>
What color is a stop sign?
</p>
</statement>
<choices>
<choice>
<statement>
<p>
Green
</p>
</statement>
<feedback>
<p>
Green means
<q>go!</q>.
</p>
</feedback>
</choice>
<choice correct="yes">
<statement>
<p>
Red
</p>
</statement>
<feedback>
<p>
Red is universally used for prohibited activities or serious warnings.
</p>
</feedback>
</choice>
<choice>
<statement>
<p>
White
</p>
</statement>
<feedback>
<p>
White might be hard to see.
</p>
</feedback>
</choice>
</choices>
<hint>
<p>
What did you see last time you went driving?
</p>
</hint>
<hint>
<p>
Maybe go out for a drive?
</p>
</hint>
</exercise>
- Green
- Green means “go!”.
- Red
- Red is universally used for prohibited activities or serious warnings.
- White
- White might be hard to see.
What color is a stop sign?
Hint 1.
View Source for hint
<hint>
<p>
What did you see last time you went driving?
</p>
</hint>
What did you see last time you went driving?
Hint 2.
View Source for hint
<hint>
<p>
Maybe go out for a drive?
</p>
</hint>
Maybe go out for a drive?
Worksheets allow for material interleaved with the
<exercise>
throughout.2. Parsons Problem, Group Work.
View Source for exercise
<exercise label="groupwork-number-theory" adaptive="yes" language="natural">
<title>Parsons Problem, Group Work</title>
<idx>even numbers</idx>
<idx>groupwork</idx>
<statement>
<p>
Create a proof of the theorem: If <m>n</m> is an even number,
then <m>n\equiv 0\mod 2</m>.
</p>
</statement>
<blocks>
<block order="2">
<p>
Suppose <m>n</m> is even.
</p>
</block>
<block order="3">
<choice>
<p>
Then <m>n</m> is a prime number.
</p>
</choice>
<choice correct="yes">
<p>
Then there exists an <m>m</m> so that <m>n = 2m</m>.
</p>
</choice>
<choice>
<p>
Then there exists an <m>m</m> so that <m>n = 2m + 1</m>.
</p>
</choice>
</block>
<block order="1" correct="no">
<p>
Click the heels of your ruby slippers together three times.
</p>
</block>
<block order="5">
<p>
So <m>n = 2m + 0</m>.
</p>
<p>
This is a superfluous second paragraph in this block.
</p>
</block>
<block order="4">
<p>
Thus <m>n\equiv 0\mod 2</m>.
</p>
</block>
<block order="6" correct="no">
<p>
And a little bit of irrelevant multi-line math
<md>
<mrow>c^2&a^2+b^2</mrow>
<mrow>&x^2+y^2</mrow>
</md>.
</p>
</block>
</blocks>
<hint>
<p>
Dorothy will not be much help with this proof.
</p>
</hint>
</exercise>
Create a proof of the theorem: If \(n\) is an even number, then \(n\equiv 0\mod 2\text{.}\)
Hint.
View Source for hint
<hint>
<p>
Dorothy will not be much help with this proof.
</p>
</hint>
Dorothy will not be much help with this proof.