Skip to main content Contents Index
Prev Up Next Scratch ActiveCode \(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{{\not{\mid}}}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
References 2.7 References and Suggested Readings
[1]
Brookshear, J. G. Theory of Computation: Formal Languages, Automata, and Complexity . Benjamin/Cummings, Redwood City, CA, 1989. Shows the relationships of the theoretical aspects of computer science to set theory and the integers.
[2]
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers . 6th ed. Oxford University Press, New York, 2008.
[3]
Niven, I. and Zuckerman, H. S. An Introduction to the Theory of Numbers . 5th ed. Wiley, New York, 1991.
[4]
Vanden Eynden, C. Elementary Number Theory . 2nd ed. Waveland Press, Long Grove IL, 2001.