Skip to main content
Logo image

PreTeXt Sample Book: Abstract Algebra (SAMPLE ONLY)

Exercises 2.5 Exercises

View Source for exercises
<exercises xml:id="exercises-cyclic" xml:base="exercises/cyclic.xml">
  <title>Exercises</title>
  <exercise number="1">
    <statement>
      <p>
        Prove or disprove each of the following statements.
      </p>
      <ol>
        <li>
          <p>
            All of the generators of <m>{\mathbb Z}_{60}</m> are prime.
          </p>
        </li>
        <li>
          <p>
            <m>U(8)</m> is cyclic.
          </p>
        </li>
        <li>
          <p>
            <m>{\mathbb Q}</m> is cyclic.
          </p>
        </li>
        <li>
          <p>
            If every proper subgroup of a group <m>G</m> is cyclic,
            then <m>G</m> is a cyclic group.
          </p>
        </li>
        <li>
          <p>
            A group with a finite number of subgroups is finite.
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="2">
    <statement>
      <p>
        Find the order of each of the following elements.
      </p>
      <ol cols="2">
        <li>
          <p>
            <m>5 \in {\mathbb Z}_{12}</m>
          </p>
        </li>
        <li>
          <p>
            <m>\sqrt{3} \in {\mathbb R}</m>
          </p>
        </li>
        <li>
          <p>
            <m>\sqrt{3} \in {\mathbb R}^\ast</m>
          </p>
        </li>
        <li>
          <p>
            <m>-i \in {\mathbb C}^\ast</m>
          </p>
        </li>
        <li>
          <p>
            72 in <m>{\mathbb Z}_{240}</m>
          </p>
        </li>
        <li>
          <p>
            312 in <m>{\mathbb Z}_{471}</m>
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="3">
    <statement>
      <p>
        List all of the elements in each of the following subgroups.
      </p>
      <ol>
        <li>
          <p>
            The subgroup of <m>{\mathbb Z}</m> generated by 7
          </p>
        </li>
        <li>
          <p>
            The subgroup of <m>{\mathbb Z}_{24}</m> generated by 15
          </p>
        </li>
        <li>
          <p>
            All subgroups of <m>{\mathbb Z}_{12}</m>
          </p>
        </li>
        <li>
          <p>
            All subgroups of <m>{\mathbb Z}_{60}</m>
          </p>
        </li>
        <li>
          <p>
            All subgroups of <m>{\mathbb Z}_{13}</m>
          </p>
        </li>
        <li>
          <p>
            All subgroups of <m>{\mathbb Z}_{48}</m>
          </p>
        </li>
        <li>
          <p>
            The subgroup generated by 3 in <m>U(20)</m>
          </p>
        </li>
        <li>
          <p>
            The subgroup generated by 5 in <m>U(18)</m>
          </p>
        </li>
        <li>
          <p>
            The subgroup of <m>{\mathbb R}^\ast</m> generated by 7
          </p>
        </li>
        <li>
          <p>
            The subgroup of <m>{\mathbb C}^\ast</m> generated by <m>i</m> where <m>i^2 = -1</m>
          </p>
        </li>
        <li>
          <p>
            The subgroup of <m>{\mathbb C}^\ast</m> generated by <m>2i</m>
          </p>
        </li>
        <li>
          <p>
            The subgroup of <m>{\mathbb C}^\ast</m> generated by <m>(1 + i) / \sqrt{2}</m>
          </p>
        </li>
        <li>
          <p>
            The subgroup of <m>{\mathbb C}^\ast</m> generated by <m>(1 + \sqrt{3}\, i) / 2</m>
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="4">
    <statement>
      <p>
        Find the subgroups of <m>GL_2( {\mathbb R })</m> generated by each of the following matrices.
      </p>
      <ol cols="3">
        <li>
          <p>
            <m>\displaystyle \begin{pmatrix} 0 &amp; 1 \\ -1 &amp; 0 \end{pmatrix}</m>
          </p>
        </li>
        <li>
          <p>
            <m>\displaystyle \begin{pmatrix} 0 &amp; 1/3 \\ 3 &amp; 0 \end{pmatrix}</m>
          </p>
        </li>
        <li>
          <p>
            <m>\displaystyle \begin{pmatrix} 1 &amp; -1 \\ 1 &amp; 0 \end{pmatrix}</m>
          </p>
        </li>
        <li>
          <p>
            <m>\displaystyle \begin{pmatrix} 1 &amp; -1 \\ 0 &amp; 1 \end{pmatrix}</m>
          </p>
        </li>
        <li>
          <p>
            <m>\displaystyle \begin{pmatrix} 1 &amp; -1 \\ -1 &amp; 0 \end{pmatrix}</m>
          </p>
        </li>
        <li>
          <p>
            <m>\displaystyle \begin{pmatrix} \sqrt{3}/ 2 &amp; 1/2 \\ -1/2 &amp; \sqrt{3}/2 \end{pmatrix}</m>
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="5">
    <statement>
      <p>
        Find the order of every element in <m>{\mathbb Z}_{18}</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="6">
    <statement>
      <p>
        Find the order of every element in the symmetry group of the square,
        <m>D_4</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="7">
    <statement>
      <p>
        What are all of the cyclic subgroups of the quaternion group,
        <m>Q_8</m>?
      </p>
    </statement>
  </exercise>
  <exercise number="8">
    <statement>
      <p>
        List all of the cyclic subgroups of <m>U(30)</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="9">
    <statement>
      <p>
        List every generator of each subgroup of order 8 in <m>{\mathbb Z}_{32}</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="10">
    <statement>
      <p>
        Find all elements of finite order in each of the following groups.
        Here the
        <q><m>\ast</m></q>
        indicates the set with zero removed.
      </p>
      <ol cols="3">
        <li>
          <p>
            <m>{\mathbb Z}</m>
          </p>
        </li>
        <li>
          <p>
            <m>{\mathbb Q}^\ast</m>
          </p>
        </li>
        <li>
          <p>
            <m>{\mathbb R}^\ast</m>
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="11">
    <statement>
      <p>
        If <m>a^{24} =e</m> in a group <m>G</m>,
        what are the possible orders of <m>a</m>?
      </p>
    </statement>
  </exercise>
  <exercise number="12">
    <statement>
      <p>
        Find a cyclic group with exactly one generator.
        Can you find cyclic groups with exactly two generators?
        Four generators?
        How about <m>n</m> generators?
      </p>
    </statement>
  </exercise>
  <exercise number="13">
    <statement>
      <p>
        For <m>n \leq 20</m>, which groups <m>U(n)</m> are cyclic?
        Make a conjecture as to what is true in general.
        Can you prove your conjecture?
      </p>
    </statement>
  </exercise>
  <exercise number="14">
    <statement>
      <p>
        Let
        <me>
          A = \begin{pmatrix} 0 &amp; 1 \\ -1 &amp; 0 \end{pmatrix} \qquad \text{and} \qquad B = \begin{pmatrix} 0 &amp; -1 \\ 1 &amp; -1 \end{pmatrix}
        </me>
        be elements in <m>GL_2( {\mathbb R} )</m>.
        Show that <m>A</m> and <m>B</m> have finite orders but <m>AB</m> does not.
      </p>
    </statement>
  </exercise>
  <exercise number="15">
    <statement>
      <p>
        Evaluate each of the following.
      </p>
      <ol cols="2">
        <li>
          <p>
            <m>(3-2i)+ (5i-6)</m>
          </p>
        </li>
        <li>
          <p>
            <m>(4-5i)-\overline{(4i -4)}</m>
          </p>
        </li>
        <li>
          <p>
            <m>(5-4i)(7+2i)</m>
          </p>
        </li>
        <li>
          <p>
            <m>(9-i) \overline{(9-i)}</m>
          </p>
        </li>
        <li>
          <p>
            <m>i^{45}</m>
          </p>
        </li>
        <li>
          <p>
            <m>(1+i)+\overline{(1+i)}</m>
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="16">
    <statement>
      <p>
        Convert the following complex numbers to the form <m>a + bi</m>.
      </p>
      <ol cols="2">
        <li>
          <p>
            <m>2 \cis(\pi / 6 )</m>
          </p>
        </li>
        <li>
          <p>
            <m>5 \cis(9\pi/4)</m>
          </p>
        </li>
        <li>
          <p>
            <m>3 \cis(\pi)</m>
          </p>
        </li>
        <li>
          <p>
            <m>\cis(7\pi/4) /2</m>
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="17">
    <statement>
      <p>
        Change the following complex numbers to polar representation.
      </p>
      <ol cols="3">
        <li>
          <p>
            <m>1-i</m>
          </p>
        </li>
        <li>
          <p>
            <m>-5</m>
          </p>
        </li>
        <li>
          <p>
            <m>2+2i</m>
          </p>
        </li>
        <li>
          <p>
            <m>\sqrt{3} + i</m>
          </p>
        </li>
        <li>
          <p>
            <m>-3i</m>
          </p>
        </li>
        <li>
          <p>
            <m>2i + 2 \sqrt{3}</m>
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="18">
    <statement>
      <p>
        Calculate each of the following expressions.
      </p>
      <ol cols="2">
        <li>
          <p>
            <m>(1+i)^{-1}</m>
          </p>
        </li>
        <li>
          <p>
            <m>(1 - i)^{6}</m>
          </p>
        </li>
        <li>
          <p>
            <m>(\sqrt{3} + i)^{5}</m>
          </p>
        </li>
        <li>
          <p>
            <m>(-i)^{10}</m>
          </p>
        </li>
        <li>
          <p>
            <m>((1-i)/2)^{4}</m>
          </p>
        </li>
        <li>
          <p>
            <m>(-\sqrt{2} - \sqrt{2}\, i)^{12}</m>
          </p>
        </li>
        <li>
          <p>
            <m>(-2 + 2i)^{-5}</m>
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="19">
    <statement>
      <p>
        Prove each of the following statements.
      </p>
      <ol cols="2">
        <li>
          <p>
            <m>|z| = | \overline{z}|</m>
          </p>
        </li>
        <li>
          <p>
            <m>z \overline{z} = |z|^2</m>
          </p>
        </li>
        <li>
          <p>
            <m>z^{-1} = \overline{z} / |z|^2</m>
          </p>
        </li>
        <li>
          <p>
            <m>|z +w| \leq |z| + |w|</m>
          </p>
        </li>
        <li>
          <p>
            <m>|z - w| \geq | |z| - |w||</m>
          </p>
        </li>
        <li>
          <p>
            <m>|z w| = |z| |w|</m>
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="20">
    <statement>
      <p>
        List and graph the 6th roots of unity.
        What are the generators of this group?
        What are the primitive 6th roots of unity?
      </p>
    </statement>
  </exercise>
  <exercise number="21">
    <statement>
      <p>
        List and graph the 5th roots of unity.
        What are the generators of this group?
        What are the primitive 5th roots of unity?
      </p>
    </statement>
  </exercise>
  <exercise number="22">
    <statement>
      <p>
        Calculate each of the following.
      </p>
      <ol cols="2">
        <li>
          <p>
            <m>292^{3171} \pmod{ 582}</m>
          </p>
        </li>
        <li>
          <p>
            <m>2557^{ 341} \pmod{ 5681}</m>
          </p>
        </li>
        <li>
          <p>
            <m>2071^{ 9521} \pmod{ 4724}</m>
          </p>
        </li>
        <li>
          <p>
            <m>971^{ 321} \pmod{ 765}</m>
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="23">
    <statement>
      <p>
        Let <m>a, b \in G</m>.
        Prove the following statements.
      </p>
      <ol>
        <li>
          <p>
            The order of <m>a</m> is the same as the order of <m>a^{-1}</m>.
          </p>
        </li>
        <li>
          <p>
            For all <m>g \in G</m>, <m>|a| = |g^{-1}ag|</m>.
          </p>
        </li>
        <li>
          <p>
            The order of <m>ab</m> is the same as the order of <m>ba</m>.
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="24">
    <statement>
      <p>
        Let <m>p</m> and <m>q</m> be distinct primes.
        How many generators does <m>{\mathbb Z}_{pq}</m> have?
      </p>
    </statement>
  </exercise>
  <exercise number="25">
    <statement>
      <p>
        Let <m>p</m> be prime and <m>r</m> be a positive integer.
        How many generators does <m>{\mathbb Z}_{p^r}</m> have?
      </p>
    </statement>
  </exercise>
  <exercise number="26">
    <statement>
      <p>
        Prove that <m>{\mathbb Z}_{p}</m> has no nontrivial subgroups if <m>p</m> is prime.
      </p>
    </statement>
  </exercise>
  <exercise number="27">
    <statement>
      <p>
        If <m>g</m> and <m>h</m> have orders 15 and 16 respectively in a group <m>G</m>,
        what is the order of <m>\langle g \rangle \cap \langle h \rangle </m>?
      </p>
    </statement>
  </exercise>
  <exercise number="28">
    <statement>
      <p>
        Let <m>a</m> be an element in a group <m>G</m>.
        What is a generator for the subgroup <m>\langle a^m \rangle \cap \langle a^n \rangle</m>?
      </p>
    </statement>
  </exercise>
  <exercise number="29">
    <statement>
      <p>
        Prove that <m>{\mathbb Z}_n</m> has an even number of generators for <m>n \gt 2</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="30">
    <statement>
      <p>
        Suppose that <m>G</m> is a group and let <m>a</m>, <m>b \in G</m>.
        Prove that if <m>|a| = m</m> and <m>|b| = n</m> with <m>\gcd(m,n) = 1</m>,
        then <m>\langle a \rangle \cap \langle b \rangle = \{ e \}</m>.
      </p>
    </statement>
  </exercise>

  <exercise number="31">
    <statement>
      <p>
        Let <m>G</m> be an abelian group.
        Show that the elements of finite order in <m>G</m> form a subgroup.
        This subgroup is called the <term>torsion subgroup</term> of <m>G</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="32">
    <statement>
      <p>
        Let <m>G</m> be a finite cyclic group of order <m>n</m> generated by <m>x</m>.
        Show that if <m>y = x^k</m> where <m>\gcd(k,n) = 1</m>,
        then <m>y</m> must be a generator of <m>G</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="33">
    <statement>
      <p>
        If <m>G</m> is an abelian group that contains a pair of cyclic subgroups of order 2, show that <m>G</m> must contain a subgroup of order 4.
        Does this subgroup have to be cyclic?
      </p>
    </statement>
  </exercise>
  <exercise number="34">
    <statement>
      <p>
        Let <m>G</m> be an abelian group of order <m>pq</m> where <m>\gcd(p,q) = 1</m>.
        If <m>G</m> contains elements <m>a</m> and <m>b</m> of order <m>p</m> and <m>q</m> respectively,
        then show that <m>G</m> is cyclic.
      </p>
    </statement>
  </exercise>
  <exercise number="35">
    <statement>
      <p>
        Prove that the subgroups of <m>\mathbb Z</m> are exactly
        <m>n{\mathbb Z}</m> for <m>n = 0, 1, 2, \ldots</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="36">
    <statement>
      <p>
        Prove that the generators of
        <m>{\mathbb Z}_n</m> are the integers <m>r</m> such that
        <m>1 \leq r \lt n</m> and <m>\gcd(r,n) = 1</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="37">
    <statement>
      <p>
        Prove that if <m>G</m> has no proper nontrivial subgroups,
        then <m>G</m> is a cyclic group.
      </p>
    </statement>
  </exercise>
  <exercise number="38">
    <statement>
      <p>
        Prove that the order of an element in a cyclic group <m>G</m> must divide the order of the group.
      </p>
    </statement>
  </exercise>
  <exercise number="39" xml:id="cyclic-exercise-subgroups-exist">
    <statement>
      <p>
        Prove that if <m>G</m> is a cyclic group of order <m>m</m> and <m>d \mid m</m>,
        then <m>G</m> must have a subgroup of order <m>d</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="40">
    <statement>
      <p>
        For what integers <m>n</m> is <m>-1</m> an <m>n</m>th root of unity?
      </p>
    </statement>
  </exercise>
  <exercise number="41">
    <statement>
      <p>
        If <m>z = r( \cos \theta + i \sin \theta)</m> and
        <m>w = s(\cos \phi + i \sin \phi)</m> are two nonzero complex numbers,
        show that
        <me>
          zw = rs[ \cos( \theta + \phi)  + i \sin( \theta + \phi)]
        </me>.
      </p>
    </statement>
  </exercise>
  <exercise number="42">
    <statement>
      <p>
        Prove that the circle group is a subgroup of <m>{\mathbb C}^*</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="43">
    <statement>
      <p>
        Prove that the <m>n</m>th roots of unity form a cyclic subgroup of <m>{\mathbb T}</m> of order <m>n</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="44">
    <statement>
      <p>
        Let <m>\alpha \in \mathbb T</m>.
        Prove that <m>\alpha^m =1</m> and <m>\alpha^n = 1</m> if and only if
        <m>\alpha^d = 1</m> for <m>d = \gcd(m,n)</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="45">
    <statement>
      <p>
        Let <m>z \in {\mathbb C}^\ast</m>.
        If <m>|z| \neq 1</m>, prove that the order of <m>z</m> is infinite.
      </p>
    </statement>
  </exercise>
  <exercise number="46">
    <statement>
      <p>
        Let <m>z =\cos \theta + i \sin \theta</m> be in
        <m>{\mathbb T}</m> where <m>\theta \in {\mathbb Q}</m>.
        Prove that the order of <m>z</m> is infinite.
      </p>
    </statement>
  </exercise>
</exercises>

1.

View Source for exercise
<exercise number="1">
  <statement>
    <p>
      Prove or disprove each of the following statements.
    </p>
    <ol>
      <li>
        <p>
          All of the generators of <m>{\mathbb Z}_{60}</m> are prime.
        </p>
      </li>
      <li>
        <p>
          <m>U(8)</m> is cyclic.
        </p>
      </li>
      <li>
        <p>
          <m>{\mathbb Q}</m> is cyclic.
        </p>
      </li>
      <li>
        <p>
          If every proper subgroup of a group <m>G</m> is cyclic,
          then <m>G</m> is a cyclic group.
        </p>
      </li>
      <li>
        <p>
          A group with a finite number of subgroups is finite.
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Prove or disprove each of the following statements.
  1. All of the generators of \({\mathbb Z}_{60}\) are prime.
  2. \(U(8)\) is cyclic.
  3. \({\mathbb Q}\) is cyclic.
  4. If every proper subgroup of a group \(G\) is cyclic, then \(G\) is a cyclic group.
  5. A group with a finite number of subgroups is finite.

2.

View Source for exercise
<exercise number="2">
  <statement>
    <p>
      Find the order of each of the following elements.
    </p>
    <ol cols="2">
      <li>
        <p>
          <m>5 \in {\mathbb Z}_{12}</m>
        </p>
      </li>
      <li>
        <p>
          <m>\sqrt{3} \in {\mathbb R}</m>
        </p>
      </li>
      <li>
        <p>
          <m>\sqrt{3} \in {\mathbb R}^\ast</m>
        </p>
      </li>
      <li>
        <p>
          <m>-i \in {\mathbb C}^\ast</m>
        </p>
      </li>
      <li>
        <p>
          72 in <m>{\mathbb Z}_{240}</m>
        </p>
      </li>
      <li>
        <p>
          312 in <m>{\mathbb Z}_{471}</m>
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Find the order of each of the following elements.
  1. \(\displaystyle 5 \in {\mathbb Z}_{12}\)
  2. \(\displaystyle \sqrt{3} \in {\mathbb R}\)
  3. \(\displaystyle \sqrt{3} \in {\mathbb R}^\ast\)
  4. \(\displaystyle -i \in {\mathbb C}^\ast\)
  5. 72 in \({\mathbb Z}_{240}\)
  6. 312 in \({\mathbb Z}_{471}\)

3.

View Source for exercise
<exercise number="3">
  <statement>
    <p>
      List all of the elements in each of the following subgroups.
    </p>
    <ol>
      <li>
        <p>
          The subgroup of <m>{\mathbb Z}</m> generated by 7
        </p>
      </li>
      <li>
        <p>
          The subgroup of <m>{\mathbb Z}_{24}</m> generated by 15
        </p>
      </li>
      <li>
        <p>
          All subgroups of <m>{\mathbb Z}_{12}</m>
        </p>
      </li>
      <li>
        <p>
          All subgroups of <m>{\mathbb Z}_{60}</m>
        </p>
      </li>
      <li>
        <p>
          All subgroups of <m>{\mathbb Z}_{13}</m>
        </p>
      </li>
      <li>
        <p>
          All subgroups of <m>{\mathbb Z}_{48}</m>
        </p>
      </li>
      <li>
        <p>
          The subgroup generated by 3 in <m>U(20)</m>
        </p>
      </li>
      <li>
        <p>
          The subgroup generated by 5 in <m>U(18)</m>
        </p>
      </li>
      <li>
        <p>
          The subgroup of <m>{\mathbb R}^\ast</m> generated by 7
        </p>
      </li>
      <li>
        <p>
          The subgroup of <m>{\mathbb C}^\ast</m> generated by <m>i</m> where <m>i^2 = -1</m>
        </p>
      </li>
      <li>
        <p>
          The subgroup of <m>{\mathbb C}^\ast</m> generated by <m>2i</m>
        </p>
      </li>
      <li>
        <p>
          The subgroup of <m>{\mathbb C}^\ast</m> generated by <m>(1 + i) / \sqrt{2}</m>
        </p>
      </li>
      <li>
        <p>
          The subgroup of <m>{\mathbb C}^\ast</m> generated by <m>(1 + \sqrt{3}\, i) / 2</m>
        </p>
      </li>
    </ol>
  </statement>
</exercise>
List all of the elements in each of the following subgroups.
  1. The subgroup of \({\mathbb Z}\) generated by 7
  2. The subgroup of \({\mathbb Z}_{24}\) generated by 15
  3. All subgroups of \({\mathbb Z}_{12}\)
  4. All subgroups of \({\mathbb Z}_{60}\)
  5. All subgroups of \({\mathbb Z}_{13}\)
  6. All subgroups of \({\mathbb Z}_{48}\)
  7. The subgroup generated by 3 in \(U(20)\)
  8. The subgroup generated by 5 in \(U(18)\)
  9. The subgroup of \({\mathbb R}^\ast\) generated by 7
  10. The subgroup of \({\mathbb C}^\ast\) generated by \(i\) where \(i^2 = -1\)
  11. The subgroup of \({\mathbb C}^\ast\) generated by \(2i\)
  12. The subgroup of \({\mathbb C}^\ast\) generated by \((1 + i) / \sqrt{2}\)
  13. The subgroup of \({\mathbb C}^\ast\) generated by \((1 + \sqrt{3}\, i) / 2\)

4.

View Source for exercise
<exercise number="4">
  <statement>
    <p>
      Find the subgroups of <m>GL_2( {\mathbb R })</m> generated by each of the following matrices.
    </p>
    <ol cols="3">
      <li>
        <p>
          <m>\displaystyle \begin{pmatrix} 0 &amp; 1 \\ -1 &amp; 0 \end{pmatrix}</m>
        </p>
      </li>
      <li>
        <p>
          <m>\displaystyle \begin{pmatrix} 0 &amp; 1/3 \\ 3 &amp; 0 \end{pmatrix}</m>
        </p>
      </li>
      <li>
        <p>
          <m>\displaystyle \begin{pmatrix} 1 &amp; -1 \\ 1 &amp; 0 \end{pmatrix}</m>
        </p>
      </li>
      <li>
        <p>
          <m>\displaystyle \begin{pmatrix} 1 &amp; -1 \\ 0 &amp; 1 \end{pmatrix}</m>
        </p>
      </li>
      <li>
        <p>
          <m>\displaystyle \begin{pmatrix} 1 &amp; -1 \\ -1 &amp; 0 \end{pmatrix}</m>
        </p>
      </li>
      <li>
        <p>
          <m>\displaystyle \begin{pmatrix} \sqrt{3}/ 2 &amp; 1/2 \\ -1/2 &amp; \sqrt{3}/2 \end{pmatrix}</m>
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Find the subgroups of \(GL_2( {\mathbb R })\) generated by each of the following matrices.
  1. \(\displaystyle \displaystyle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\)
  2. \(\displaystyle \displaystyle \begin{pmatrix} 0 & 1/3 \\ 3 & 0 \end{pmatrix}\)
  3. \(\displaystyle \displaystyle \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}\)
  4. \(\displaystyle \displaystyle \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\)
  5. \(\displaystyle \displaystyle \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}\)
  6. \(\displaystyle \displaystyle \begin{pmatrix} \sqrt{3}/ 2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}\)

5.

View Source for exercise
<exercise number="5">
  <statement>
    <p>
      Find the order of every element in <m>{\mathbb Z}_{18}</m>.
    </p>
  </statement>
</exercise>
Find the order of every element in \({\mathbb Z}_{18}\text{.}\)

6.

View Source for exercise
<exercise number="6">
  <statement>
    <p>
      Find the order of every element in the symmetry group of the square,
      <m>D_4</m>.
    </p>
  </statement>
</exercise>
Find the order of every element in the symmetry group of the square, \(D_4\text{.}\)

7.

View Source for exercise
<exercise number="7">
  <statement>
    <p>
      What are all of the cyclic subgroups of the quaternion group,
      <m>Q_8</m>?
    </p>
  </statement>
</exercise>
What are all of the cyclic subgroups of the quaternion group, \(Q_8\text{?}\)

8.

View Source for exercise
<exercise number="8">
  <statement>
    <p>
      List all of the cyclic subgroups of <m>U(30)</m>.
    </p>
  </statement>
</exercise>
List all of the cyclic subgroups of \(U(30)\text{.}\)

9.

View Source for exercise
<exercise number="9">
  <statement>
    <p>
      List every generator of each subgroup of order 8 in <m>{\mathbb Z}_{32}</m>.
    </p>
  </statement>
</exercise>
List every generator of each subgroup of order 8 in \({\mathbb Z}_{32}\text{.}\)

10.

View Source for exercise
<exercise number="10">
  <statement>
    <p>
      Find all elements of finite order in each of the following groups.
      Here the
      <q><m>\ast</m></q>
      indicates the set with zero removed.
    </p>
    <ol cols="3">
      <li>
        <p>
          <m>{\mathbb Z}</m>
        </p>
      </li>
      <li>
        <p>
          <m>{\mathbb Q}^\ast</m>
        </p>
      </li>
      <li>
        <p>
          <m>{\mathbb R}^\ast</m>
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Find all elements of finite order in each of the following groups. Here the “\(\ast\)” indicates the set with zero removed.
  1. \(\displaystyle {\mathbb Z}\)
  2. \(\displaystyle {\mathbb Q}^\ast\)
  3. \(\displaystyle {\mathbb R}^\ast\)

11.

View Source for exercise
<exercise number="11">
  <statement>
    <p>
      If <m>a^{24} =e</m> in a group <m>G</m>,
      what are the possible orders of <m>a</m>?
    </p>
  </statement>
</exercise>
If \(a^{24} =e\) in a group \(G\text{,}\) what are the possible orders of \(a\text{?}\)

12.

View Source for exercise
<exercise number="12">
  <statement>
    <p>
      Find a cyclic group with exactly one generator.
      Can you find cyclic groups with exactly two generators?
      Four generators?
      How about <m>n</m> generators?
    </p>
  </statement>
</exercise>
Find a cyclic group with exactly one generator. Can you find cyclic groups with exactly two generators? Four generators? How about \(n\) generators?

13.

View Source for exercise
<exercise number="13">
  <statement>
    <p>
      For <m>n \leq 20</m>, which groups <m>U(n)</m> are cyclic?
      Make a conjecture as to what is true in general.
      Can you prove your conjecture?
    </p>
  </statement>
</exercise>
For \(n \leq 20\text{,}\) which groups \(U(n)\) are cyclic? Make a conjecture as to what is true in general. Can you prove your conjecture?

14.

View Source for exercise
<exercise number="14">
  <statement>
    <p>
      Let
      <me>
        A = \begin{pmatrix} 0 &amp; 1 \\ -1 &amp; 0 \end{pmatrix} \qquad \text{and} \qquad B = \begin{pmatrix} 0 &amp; -1 \\ 1 &amp; -1 \end{pmatrix}
      </me>
      be elements in <m>GL_2( {\mathbb R} )</m>.
      Show that <m>A</m> and <m>B</m> have finite orders but <m>AB</m> does not.
    </p>
  </statement>
</exercise>
Let
\begin{equation*} A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \text{and} \qquad B = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \end{equation*}
be elements in \(GL_2( {\mathbb R} )\text{.}\) Show that \(A\) and \(B\) have finite orders but \(AB\) does not.

15.

View Source for exercise
<exercise number="15">
  <statement>
    <p>
      Evaluate each of the following.
    </p>
    <ol cols="2">
      <li>
        <p>
          <m>(3-2i)+ (5i-6)</m>
        </p>
      </li>
      <li>
        <p>
          <m>(4-5i)-\overline{(4i -4)}</m>
        </p>
      </li>
      <li>
        <p>
          <m>(5-4i)(7+2i)</m>
        </p>
      </li>
      <li>
        <p>
          <m>(9-i) \overline{(9-i)}</m>
        </p>
      </li>
      <li>
        <p>
          <m>i^{45}</m>
        </p>
      </li>
      <li>
        <p>
          <m>(1+i)+\overline{(1+i)}</m>
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Evaluate each of the following.
  1. \(\displaystyle (3-2i)+ (5i-6)\)
  2. \(\displaystyle (4-5i)-\overline{(4i -4)}\)
  3. \(\displaystyle (5-4i)(7+2i)\)
  4. \(\displaystyle (9-i) \overline{(9-i)}\)
  5. \(\displaystyle i^{45}\)
  6. \(\displaystyle (1+i)+\overline{(1+i)}\)

16.

View Source for exercise
<exercise number="16">
  <statement>
    <p>
      Convert the following complex numbers to the form <m>a + bi</m>.
    </p>
    <ol cols="2">
      <li>
        <p>
          <m>2 \cis(\pi / 6 )</m>
        </p>
      </li>
      <li>
        <p>
          <m>5 \cis(9\pi/4)</m>
        </p>
      </li>
      <li>
        <p>
          <m>3 \cis(\pi)</m>
        </p>
      </li>
      <li>
        <p>
          <m>\cis(7\pi/4) /2</m>
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Convert the following complex numbers to the form \(a + bi\text{.}\)
  1. \(\displaystyle 2 \cis(\pi / 6 )\)
  2. \(\displaystyle 5 \cis(9\pi/4)\)
  3. \(\displaystyle 3 \cis(\pi)\)
  4. \(\displaystyle \cis(7\pi/4) /2\)

17.

View Source for exercise
<exercise number="17">
  <statement>
    <p>
      Change the following complex numbers to polar representation.
    </p>
    <ol cols="3">
      <li>
        <p>
          <m>1-i</m>
        </p>
      </li>
      <li>
        <p>
          <m>-5</m>
        </p>
      </li>
      <li>
        <p>
          <m>2+2i</m>
        </p>
      </li>
      <li>
        <p>
          <m>\sqrt{3} + i</m>
        </p>
      </li>
      <li>
        <p>
          <m>-3i</m>
        </p>
      </li>
      <li>
        <p>
          <m>2i + 2 \sqrt{3}</m>
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Change the following complex numbers to polar representation.
  1. \(\displaystyle 1-i\)
  2. \(\displaystyle -5\)
  3. \(\displaystyle 2+2i\)
  4. \(\displaystyle \sqrt{3} + i\)
  5. \(\displaystyle -3i\)
  6. \(\displaystyle 2i + 2 \sqrt{3}\)

18.

View Source for exercise
<exercise number="18">
  <statement>
    <p>
      Calculate each of the following expressions.
    </p>
    <ol cols="2">
      <li>
        <p>
          <m>(1+i)^{-1}</m>
        </p>
      </li>
      <li>
        <p>
          <m>(1 - i)^{6}</m>
        </p>
      </li>
      <li>
        <p>
          <m>(\sqrt{3} + i)^{5}</m>
        </p>
      </li>
      <li>
        <p>
          <m>(-i)^{10}</m>
        </p>
      </li>
      <li>
        <p>
          <m>((1-i)/2)^{4}</m>
        </p>
      </li>
      <li>
        <p>
          <m>(-\sqrt{2} - \sqrt{2}\, i)^{12}</m>
        </p>
      </li>
      <li>
        <p>
          <m>(-2 + 2i)^{-5}</m>
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Calculate each of the following expressions.
  1. \(\displaystyle (1+i)^{-1}\)
  2. \(\displaystyle (1 - i)^{6}\)
  3. \(\displaystyle (\sqrt{3} + i)^{5}\)
  4. \(\displaystyle (-i)^{10}\)
  5. \(\displaystyle ((1-i)/2)^{4}\)
  6. \(\displaystyle (-\sqrt{2} - \sqrt{2}\, i)^{12}\)
  7. \(\displaystyle (-2 + 2i)^{-5}\)

19.

View Source for exercise
<exercise number="19">
  <statement>
    <p>
      Prove each of the following statements.
    </p>
    <ol cols="2">
      <li>
        <p>
          <m>|z| = | \overline{z}|</m>
        </p>
      </li>
      <li>
        <p>
          <m>z \overline{z} = |z|^2</m>
        </p>
      </li>
      <li>
        <p>
          <m>z^{-1} = \overline{z} / |z|^2</m>
        </p>
      </li>
      <li>
        <p>
          <m>|z +w| \leq |z| + |w|</m>
        </p>
      </li>
      <li>
        <p>
          <m>|z - w| \geq | |z| - |w||</m>
        </p>
      </li>
      <li>
        <p>
          <m>|z w| = |z| |w|</m>
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Prove each of the following statements.
  1. \(\displaystyle |z| = | \overline{z}|\)
  2. \(\displaystyle z \overline{z} = |z|^2\)
  3. \(\displaystyle z^{-1} = \overline{z} / |z|^2\)
  4. \(\displaystyle |z +w| \leq |z| + |w|\)
  5. \(\displaystyle |z - w| \geq | |z| - |w||\)
  6. \(\displaystyle |z w| = |z| |w|\)

20.

View Source for exercise
<exercise number="20">
  <statement>
    <p>
      List and graph the 6th roots of unity.
      What are the generators of this group?
      What are the primitive 6th roots of unity?
    </p>
  </statement>
</exercise>
List and graph the 6th roots of unity. What are the generators of this group? What are the primitive 6th roots of unity?

21.

View Source for exercise
<exercise number="21">
  <statement>
    <p>
      List and graph the 5th roots of unity.
      What are the generators of this group?
      What are the primitive 5th roots of unity?
    </p>
  </statement>
</exercise>
List and graph the 5th roots of unity. What are the generators of this group? What are the primitive 5th roots of unity?

22.

View Source for exercise
<exercise number="22">
  <statement>
    <p>
      Calculate each of the following.
    </p>
    <ol cols="2">
      <li>
        <p>
          <m>292^{3171} \pmod{ 582}</m>
        </p>
      </li>
      <li>
        <p>
          <m>2557^{ 341} \pmod{ 5681}</m>
        </p>
      </li>
      <li>
        <p>
          <m>2071^{ 9521} \pmod{ 4724}</m>
        </p>
      </li>
      <li>
        <p>
          <m>971^{ 321} \pmod{ 765}</m>
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Calculate each of the following.
  1. \(\displaystyle 292^{3171} \pmod{ 582}\)
  2. \(\displaystyle 2557^{ 341} \pmod{ 5681}\)
  3. \(\displaystyle 2071^{ 9521} \pmod{ 4724}\)
  4. \(\displaystyle 971^{ 321} \pmod{ 765}\)

23.

View Source for exercise
<exercise number="23">
  <statement>
    <p>
      Let <m>a, b \in G</m>.
      Prove the following statements.
    </p>
    <ol>
      <li>
        <p>
          The order of <m>a</m> is the same as the order of <m>a^{-1}</m>.
        </p>
      </li>
      <li>
        <p>
          For all <m>g \in G</m>, <m>|a| = |g^{-1}ag|</m>.
        </p>
      </li>
      <li>
        <p>
          The order of <m>ab</m> is the same as the order of <m>ba</m>.
        </p>
      </li>
    </ol>
  </statement>
</exercise>
Let \(a, b \in G\text{.}\) Prove the following statements.
  1. The order of \(a\) is the same as the order of \(a^{-1}\text{.}\)
  2. For all \(g \in G\text{,}\) \(|a| = |g^{-1}ag|\text{.}\)
  3. The order of \(ab\) is the same as the order of \(ba\text{.}\)

24.

View Source for exercise
<exercise number="24">
  <statement>
    <p>
      Let <m>p</m> and <m>q</m> be distinct primes.
      How many generators does <m>{\mathbb Z}_{pq}</m> have?
    </p>
  </statement>
</exercise>
Let \(p\) and \(q\) be distinct primes. How many generators does \({\mathbb Z}_{pq}\) have?

25.

View Source for exercise
<exercise number="25">
  <statement>
    <p>
      Let <m>p</m> be prime and <m>r</m> be a positive integer.
      How many generators does <m>{\mathbb Z}_{p^r}</m> have?
    </p>
  </statement>
</exercise>
Let \(p\) be prime and \(r\) be a positive integer. How many generators does \({\mathbb Z}_{p^r}\) have?

26.

View Source for exercise
<exercise number="26">
  <statement>
    <p>
      Prove that <m>{\mathbb Z}_{p}</m> has no nontrivial subgroups if <m>p</m> is prime.
    </p>
  </statement>
</exercise>
Prove that \({\mathbb Z}_{p}\) has no nontrivial subgroups if \(p\) is prime.

27.

View Source for exercise
<exercise number="27">
  <statement>
    <p>
      If <m>g</m> and <m>h</m> have orders 15 and 16 respectively in a group <m>G</m>,
      what is the order of <m>\langle g \rangle \cap \langle h \rangle </m>?
    </p>
  </statement>
</exercise>
If \(g\) and \(h\) have orders 15 and 16 respectively in a group \(G\text{,}\) what is the order of \(\langle g \rangle \cap \langle h \rangle \text{?}\)

28.

View Source for exercise
<exercise number="28">
  <statement>
    <p>
      Let <m>a</m> be an element in a group <m>G</m>.
      What is a generator for the subgroup <m>\langle a^m \rangle \cap \langle a^n \rangle</m>?
    </p>
  </statement>
</exercise>
Let \(a\) be an element in a group \(G\text{.}\) What is a generator for the subgroup \(\langle a^m \rangle \cap \langle a^n \rangle\text{?}\)

29.

View Source for exercise
<exercise number="29">
  <statement>
    <p>
      Prove that <m>{\mathbb Z}_n</m> has an even number of generators for <m>n \gt 2</m>.
    </p>
  </statement>
</exercise>
Prove that \({\mathbb Z}_n\) has an even number of generators for \(n \gt 2\text{.}\)

30.

View Source for exercise
<exercise number="30">
  <statement>
    <p>
      Suppose that <m>G</m> is a group and let <m>a</m>, <m>b \in G</m>.
      Prove that if <m>|a| = m</m> and <m>|b| = n</m> with <m>\gcd(m,n) = 1</m>,
      then <m>\langle a \rangle \cap \langle b \rangle = \{ e \}</m>.
    </p>
  </statement>
</exercise>
Suppose that \(G\) is a group and let \(a\text{,}\) \(b \in G\text{.}\) Prove that if \(|a| = m\) and \(|b| = n\) with \(\gcd(m,n) = 1\text{,}\) then \(\langle a \rangle \cap \langle b \rangle = \{ e \}\text{.}\)

31.

View Source for exercise
<exercise number="31">
  <statement>
    <p>
      Let <m>G</m> be an abelian group.
      Show that the elements of finite order in <m>G</m> form a subgroup.
      This subgroup is called the <term>torsion subgroup</term> of <m>G</m>.
    </p>
  </statement>
</exercise>
Let \(G\) be an abelian group. Show that the elements of finite order in \(G\) form a subgroup. This subgroup is called the torsion subgroup of \(G\text{.}\)

32.

View Source for exercise
<exercise number="32">
  <statement>
    <p>
      Let <m>G</m> be a finite cyclic group of order <m>n</m> generated by <m>x</m>.
      Show that if <m>y = x^k</m> where <m>\gcd(k,n) = 1</m>,
      then <m>y</m> must be a generator of <m>G</m>.
    </p>
  </statement>
</exercise>
Let \(G\) be a finite cyclic group of order \(n\) generated by \(x\text{.}\) Show that if \(y = x^k\) where \(\gcd(k,n) = 1\text{,}\) then \(y\) must be a generator of \(G\text{.}\)

33.

View Source for exercise
<exercise number="33">
  <statement>
    <p>
      If <m>G</m> is an abelian group that contains a pair of cyclic subgroups of order 2, show that <m>G</m> must contain a subgroup of order 4.
      Does this subgroup have to be cyclic?
    </p>
  </statement>
</exercise>
If \(G\) is an abelian group that contains a pair of cyclic subgroups of order 2, show that \(G\) must contain a subgroup of order 4. Does this subgroup have to be cyclic?

34.

View Source for exercise
<exercise number="34">
  <statement>
    <p>
      Let <m>G</m> be an abelian group of order <m>pq</m> where <m>\gcd(p,q) = 1</m>.
      If <m>G</m> contains elements <m>a</m> and <m>b</m> of order <m>p</m> and <m>q</m> respectively,
      then show that <m>G</m> is cyclic.
    </p>
  </statement>
</exercise>
Let \(G\) be an abelian group of order \(pq\) where \(\gcd(p,q) = 1\text{.}\) If \(G\) contains elements \(a\) and \(b\) of order \(p\) and \(q\) respectively, then show that \(G\) is cyclic.

35.

View Source for exercise
<exercise number="35">
  <statement>
    <p>
      Prove that the subgroups of <m>\mathbb Z</m> are exactly
      <m>n{\mathbb Z}</m> for <m>n = 0, 1, 2, \ldots</m>.
    </p>
  </statement>
</exercise>
Prove that the subgroups of \(\mathbb Z\) are exactly \(n{\mathbb Z}\) for \(n = 0, 1, 2, \ldots\text{.}\)

36.

View Source for exercise
<exercise number="36">
  <statement>
    <p>
      Prove that the generators of
      <m>{\mathbb Z}_n</m> are the integers <m>r</m> such that
      <m>1 \leq r \lt n</m> and <m>\gcd(r,n) = 1</m>.
    </p>
  </statement>
</exercise>
Prove that the generators of \({\mathbb Z}_n\) are the integers \(r\) such that \(1 \leq r \lt n\) and \(\gcd(r,n) = 1\text{.}\)

37.

View Source for exercise
<exercise number="37">
  <statement>
    <p>
      Prove that if <m>G</m> has no proper nontrivial subgroups,
      then <m>G</m> is a cyclic group.
    </p>
  </statement>
</exercise>
Prove that if \(G\) has no proper nontrivial subgroups, then \(G\) is a cyclic group.

38.

View Source for exercise
<exercise number="38">
  <statement>
    <p>
      Prove that the order of an element in a cyclic group <m>G</m> must divide the order of the group.
    </p>
  </statement>
</exercise>
Prove that the order of an element in a cyclic group \(G\) must divide the order of the group.

39.

View Source for exercise
<exercise number="39" xml:id="cyclic-exercise-subgroups-exist">
  <statement>
    <p>
      Prove that if <m>G</m> is a cyclic group of order <m>m</m> and <m>d \mid m</m>,
      then <m>G</m> must have a subgroup of order <m>d</m>.
    </p>
  </statement>
</exercise>
Prove that if \(G\) is a cyclic group of order \(m\) and \(d \mid m\text{,}\) then \(G\) must have a subgroup of order \(d\text{.}\)

40.

View Source for exercise
<exercise number="40">
  <statement>
    <p>
      For what integers <m>n</m> is <m>-1</m> an <m>n</m>th root of unity?
    </p>
  </statement>
</exercise>
For what integers \(n\) is \(-1\) an \(n\)th root of unity?

41.

View Source for exercise
<exercise number="41">
  <statement>
    <p>
      If <m>z = r( \cos \theta + i \sin \theta)</m> and
      <m>w = s(\cos \phi + i \sin \phi)</m> are two nonzero complex numbers,
      show that
      <me>
        zw = rs[ \cos( \theta + \phi)  + i \sin( \theta + \phi)]
      </me>.
    </p>
  </statement>
</exercise>
If \(z = r( \cos \theta + i \sin \theta)\) and \(w = s(\cos \phi + i \sin \phi)\) are two nonzero complex numbers, show that
\begin{equation*} zw = rs[ \cos( \theta + \phi) + i \sin( \theta + \phi)]\text{.} \end{equation*}

42.

View Source for exercise
<exercise number="42">
  <statement>
    <p>
      Prove that the circle group is a subgroup of <m>{\mathbb C}^*</m>.
    </p>
  </statement>
</exercise>
Prove that the circle group is a subgroup of \({\mathbb C}^*\text{.}\)

43.

View Source for exercise
<exercise number="43">
  <statement>
    <p>
      Prove that the <m>n</m>th roots of unity form a cyclic subgroup of <m>{\mathbb T}</m> of order <m>n</m>.
    </p>
  </statement>
</exercise>
Prove that the \(n\)th roots of unity form a cyclic subgroup of \({\mathbb T}\) of order \(n\text{.}\)

44.

View Source for exercise
<exercise number="44">
  <statement>
    <p>
      Let <m>\alpha \in \mathbb T</m>.
      Prove that <m>\alpha^m =1</m> and <m>\alpha^n = 1</m> if and only if
      <m>\alpha^d = 1</m> for <m>d = \gcd(m,n)</m>.
    </p>
  </statement>
</exercise>
Let \(\alpha \in \mathbb T\text{.}\) Prove that \(\alpha^m =1\) and \(\alpha^n = 1\) if and only if \(\alpha^d = 1\) for \(d = \gcd(m,n)\text{.}\)

45.

View Source for exercise
<exercise number="45">
  <statement>
    <p>
      Let <m>z \in {\mathbb C}^\ast</m>.
      If <m>|z| \neq 1</m>, prove that the order of <m>z</m> is infinite.
    </p>
  </statement>
</exercise>
Let \(z \in {\mathbb C}^\ast\text{.}\) If \(|z| \neq 1\text{,}\) prove that the order of \(z\) is infinite.

46.

View Source for exercise
<exercise number="46">
  <statement>
    <p>
      Let <m>z =\cos \theta + i \sin \theta</m> be in
      <m>{\mathbb T}</m> where <m>\theta \in {\mathbb Q}</m>.
      Prove that the order of <m>z</m> is infinite.
    </p>
  </statement>
</exercise>
Let \(z =\cos \theta + i \sin \theta\) be in \({\mathbb T}\) where \(\theta \in {\mathbb Q}\text{.}\) Prove that the order of \(z\) is infinite.