Skip to main content
Logo image

PreTeXt Sample Book: Abstract Algebra (SAMPLE ONLY)

Exercises 2.4 Exercises

View Source for exercises
<exercises xml:id="exercises-integers" xml:base="exercises/integers.xml">
  <title>Exercises</title>
  <exercise number="1">
    <statement>
      <p>
        Prove that
        <me>
          1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6}
        </me>
        for <m>n \in {\mathbb N}</m>.
      </p>
    </statement>
    <answer>
      <p>
        The base case,
        <m>S(1): [1(1 + 1)(2(1) + 1)]/6 = 1 = 1^2</m> is true.
      </p>
      <p>
        Assume that <m>S(k): 1^2 + 2^2 + \cdots + k^2 = [k(k + 1)(2k + 1)]/6</m> is true.
        Then
        <md>
          <mrow>1^2 + 2^2 + \cdots + k^2 + (k + 1)^2 &amp; = [k(k + 1)(2k + 1)]/6 + (k + 1)^2</mrow>
          <mrow>&amp; = [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6</mrow>
        </md>,
        and so <m>S(k + 1)</m> is true.
        Thus, <m>S(n)</m> is true for all positive integers <m>n</m>.
      </p>
    </answer>
  </exercise>
  <exercise number="2">
    <statement>
      <p>
        Prove that
        <me>
          1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n + 1)^2}{4}
        </me>
        for <m>n \in {\mathbb N}</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="3">
    <statement>
      <p>
        Prove that <m>n! \gt 2^n</m> for <m>n \geq 4</m>.
      </p>
    </statement>
    <answer>
      <p>
        The base case, <m>S(4): 4! = 24 \gt 16 =2^4</m> is true.
        Assume <m>S(k): k! \gt 2^k</m> is true.
        Then <m>(k + 1)! = k! (k + 1) \gt 2^k \cdot 2 = 2^{k + 1}</m>,
        so <m>S(k + 1)</m> is true.
        Thus, <m>S(n)</m> is true for all positive integers <m>n</m>.
      </p>
    </answer>
  </exercise>
  <exercise number="4">
    <statement>
      <p>
        Prove that
        <me>
          x + 4x + 7x + \cdots + (3n - 2)x = \frac{n(3n - 1)x}{2}
        </me>
        for <m>n \in {\mathbb N}</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="5">
    <statement>
      <p>
        Prove that <m>10^{n + 1} + 10^n + 1</m> is divisible by 3 for <m>n \in {\mathbb N}</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="6">
    <statement>
      <p>
        Prove that <m>4 \cdot 10^{2n} + 9 \cdot 10^{2n - 1} + 5</m> is divisible by 99 for <m>n \in {\mathbb N}</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="7">
    <statement>
      <p>
        Show that
        <me>
          \sqrt[n]{a_1 a_2 \cdots a_n} \leq \frac{1}{n} \sum_{k = 1}^{n} a_k
        </me>.
      </p>
    </statement>
  </exercise>
  <exercise number="8">
    <statement>
      <p>
        Use induction to prove that
        <m>1 + 2 + 2^2 + \cdots + 2^n = 2^{n + 1} - 1</m> for <m>n \in {\mathbb N}</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="9">
    <statement>
      <p>
        Prove the Leibniz rule for <m>f^{(n)} (x)</m>,
        where <m>f^{(n)}</m> is the <m>n</m>th derivative of <m>f</m>; that is,
        show that
        <me>
          (fg)^{(n)}(x) = \sum_{k = 0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n - k)}(x)
        </me>.
      </p>
    </statement>
    <hint>
      <p>
        Follow the proof in <xref ref="example-integers-binomial-theorem" />.
      </p>
    </hint>
  </exercise>
  <exercise number="10">
    <statement>
      <p>
        Prove that
        <me>
          \frac{1}{2}+ \frac{1}{6} + \cdots + \frac{1}{n(n + 1)} = \frac{n}{n + 1}
        </me>
        for <m>n \in {\mathbb N}</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="11">
    <statement>
      <p>
        If <m>x</m> is a nonnegative real number,
        then show that <m>(1 + x)^n - 1 \geq nx</m> for <m>n = 0, 1, 2, \ldots</m>.
      </p>
    </statement>
    <hint>
      <p>
        The base case,
        <m>S(0): (1 + x)^0 - 1 = 0 \geq 0 = 0 \cdot x</m> is true.
        Assume <m>S(k): (1 + x)^k -1 \geq kx</m> is true.
        Then
        <md>
          <mrow>(1 + x)^{k + 1} - 1 &amp; = (1 + x)(1 + x)^k -1</mrow>
          <mrow>&amp; = (1 + x)^k + x(1 + x)^k - 1</mrow>
          <mrow>&amp; \geq kx + x(1 + x)^k</mrow>
          <mrow>&amp; \geq kx + x</mrow>
          <mrow>&amp; = (k + 1)x</mrow>
        </md>,
        so <m>S(k + 1)</m> is true.
        Therefore, <m>S(n)</m> is true for all positive integers <m>n</m>.
      </p>
    </hint>
  </exercise>
  <exercise number="12">
    <title>Power Sets</title>
    <statement>
      <p>
        Let <m>X</m> be a set.
        Define the <term>power set</term> of <m>X</m>,
        denoted <m>{\mathcal P}(X)</m>,
        to be the set of all subsets  of <m>X</m>.
        <notation>
          <usage><m>\mathcal P(X)</m></usage>
          <description>power set of <m>X</m></description>
        </notation>
        For example,
        <me>
          {\mathcal P}( \{a, b\} ) = \{ \emptyset, \{a\}, \{b\}, \{a, b\} \}
        </me>.
        For every positive integer <m>n</m>,
        show that a set with exactly <m>n</m> elements has a power set with exactly <m>2^n</m> elements.
      </p>
    </statement>
  </exercise>
  <exercise number="13">
    <statement>
      <p>
        Prove that the two principles of mathematical induction stated in <xref ref="section-math-induction" /> are equivalent.
      </p>
    </statement>
  </exercise>
  <exercise number="14">
    <statement>
      <p>
        Show that the Principle of Well-Ordering for the natural numbers implies that 1 is the smallest natural number.
        Use this result to show that the Principle of Well-Ordering implies the Principle of Mathematical Induction;
        that is, show that if <m>S \subset {\mathbb N}</m> such that <m>1 \in S</m> and
        <m>n + 1 \in S</m> whenever <m>n \in S</m>,
        then <m>S = {\mathbb N}</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="15">
    <statement>
      <p>
        For each of the following pairs of numbers <m>a</m> and <m>b</m>,
        calculate <m>\gcd(a,b)</m> and find integers <m>r</m> and <m>s</m> such that <m>\gcd(a,b) = ra + sb</m>.
      </p>
      <ol cols="2">
        <li>
          <p>
            14 and 39
          </p>
        </li>
        <li>
          <p>
            234 and 165
          </p>
        </li>
        <li>
          <p>
            1739 and 9923
          </p>
        </li>
        <li>
          <p>
            471 and 562
          </p>
        </li>
        <li>
          <p>
            23,771 and 19,945
          </p>
        </li>
        <li>
          <p>
            <m>-4357</m> and 3754
          </p>
        </li>
      </ol>
    </statement>
  </exercise>
  <exercise number="16" xml:id="exercise-integers-gcd-1">
    <statement>
      <p>
        Let <m>a</m> and <m>b</m> be nonzero integers.
        If there exist integers <m>r</m> and <m>s</m> such that <m>ar + bs =1</m>,
        show that <m>a</m> and <m>b</m> are relatively prime.
      </p>
    </statement>
  </exercise>

  <exercise number="17">
    <title>Fibonacci Numbers</title>
    <statement>
      <p>
        The Fibonacci numbers are
        <me>
          1, 1, 2, 3, 5, 8, 13, 21, \ldots
        </me>.
        We can define them inductively by <m>f_1 = 1</m>, <m>f_2 = 1</m>,
        and <m>f_{n + 2} = f_{n + 1} + f_n</m> for <m>n \in {\mathbb N}</m>.
      </p>
      <ol>
        <li xml:id="fn_ineq">
          <p>
            Prove that <m>f_n \lt 2^n</m>.
          </p>
        </li>
        <li xml:id="fn_prod">
          <p>
            Prove that <m>f_{n + 1} f_{n - 1} = f^2_n + (-1)^n</m>,
            <m>n \geq 2</m>.
          </p>
        </li>
        <li xml:id="fn_formula">
          <p>
            Prove that <m>f_n = [(1 + \sqrt{5}\, )^n - (1 - \sqrt{5}\, )^n]/ 2^n \sqrt{5}</m>.
          </p>
        </li>
        <li xml:id="fn_ratio">
          <p>
            Show that <m>\lim_{n \rightarrow \infty} f_n / f_{n + 1} = (\sqrt{5} - 1)/2</m>.
          </p>
        </li>
        <li xml:id="fn_coprime">
          <p>
            Prove that <m>f_n</m> and <m>f_{n + 1}</m> are relatively prime.
          </p>
        </li>
      </ol>
    </statement>
    <hint>
      <p>
        For <xref ref="fn_ineq" /> and <xref ref="fn_prod" /> use mathematical induction.
        <xref ref="fn_formula" /> Show that <m>f_1 = 1</m>,
        <m>f_2 = 1</m>, and <m>f_{n + 2} = f_{n + 1} + f_n</m>.
        <xref ref="fn_ratio" /> Use part <xref ref="fn_formula" />.
        <xref ref="fn_coprime" /> Use part <xref ref="fn_prod" /> and <xref ref="exercise-integers-gcd-1" />.
      </p>
    </hint>
  </exercise>
  <exercise number="18">
    <statement>
      <p>
        Let <m>a</m> and <m>b</m> be integers such that <m>\gcd(a,b) = 1</m>.
        Let <m>r</m> and <m>s</m> be integers such that <m>ar + bs =1</m>.
        Prove that
        <me>
          \gcd(a,s) = \gcd(r,b) = \gcd(r,s) =  1
        </me>.
      </p>
    </statement>
  </exercise>
  <exercise number="19">
    <statement>
      <p>
        Let <m>x, y \in {\mathbb N}</m> be relatively prime.
        If <m>xy</m> is a perfect square,
        prove that <m>x</m> and <m>y</m> must both be perfect squares.
      </p>
    </statement>
    <hint>
      <p>
        Use the Fundamental Theorem of Arithmetic.
      </p>
    </hint>
  </exercise>
  <exercise number="20">
    <statement>
      <p>
        Using the division algorithm,
        show that every perfect square is of the form <m>4k</m> or <m>4k + 1</m> for some nonnegative integer <m>k</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="21">
    <statement>
      <p>
        Suppose that <m>a, b, r, s</m> are pairwise relatively prime and that
        <md>
          <mrow>a^2 + b^2 &amp; = r^2</mrow>
          <mrow>a^2 - b^2 &amp; = s^2</mrow>
        </md>.
      </p>
      <p>
        Prove that <m>a</m>, <m>r</m>,
        and <m>s</m> are odd and <m>b</m> is even.
      </p>
    </statement>
  </exercise>
  <exercise number="22">
    <statement>
      <p>
        Let <m>n \in {\mathbb N}</m>.
        Use the division algorithm to prove that every integer is congruent mod <m>n</m> to precisely one of the integers <m>0, 1, \ldots, n-1</m>.
        Conclude that if <m>r</m> is an integer,
        then there is exactly one <m>s</m> in <m>{\mathbb Z}</m> such that
        <m>0 \leq s \lt n</m> and <m>[r] = [s]</m>.
        Hence, the integers are indeed partitioned by congruence mod <m>n</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="23">
    <statement>
      <p>
        Define the <term>least common multiple</term>
        of two nonzero integers <m>a</m> and <m>b</m>,
        denoted by <m>\lcm(a,b)</m>,
        to be the nonnegative integer <m>m</m> such that both <m>a</m> and <m>b</m> divide <m>m</m>,
        and if <m>a</m> and <m>b</m> divide any other integer <m>n</m>,
        then <m>m</m> also divides <m>n</m>.
        <notation>
          <usage><m>\lcm(m,n)</m></usage>
          <description>the least common multiple of <m>m</m> and <m>n</m></description>
        </notation>
        Prove that any two integers <m>a</m> and <m>b</m> have a unique least common multiple.
      </p>
    </statement>
    <hint>
      <p>
        Let <m>S = \{s \in {\mathbb N} : a \mid s</m>, <m>b \mid s \}</m>.
        Then <m>S \neq \emptyset</m>, since <m>|ab| \in S</m>.
        By the Principle of Well-Ordering,
        <m>S</m> contains a least element <m>m</m>.
        To show uniqueness, suppose that <m>a \mid n</m> and
        <m>b \mid n</m> for some <m>n \in {\mathbb N}</m>.
        By the division algorithm,
        there exist unique integers <m>q</m> and <m>r</m> such that <m>n = mq + r</m>,
        where <m>0 \leq r \lt m</m>.
        Since <m>a</m> and <m>b</m> divide both <m>m</m>, and <m>n</m>,
        it must be the case that <m>a</m> and <m>b</m> both divide <m>r</m>.
        Thus, <m>r = 0</m> by the minimality of <m>m</m>.
        Therefore, <m>m \mid n</m>.
      </p>
    </hint>
  </exercise>
  <exercise number="24" xml:id="exercise-integers-lcm-gcd">
    <statement>
      <p>
        If <m>d= \gcd(a, b)</m> and <m>m = \lcm(a, b)</m>,
        prove that <m>dm = |ab|</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="25">
    <statement>
      <p>
        Show that <m>\lcm(a,b) = ab</m> if and only if <m>\gcd(a,b) = 1</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="26">
    <statement>
      <p>
        Prove that <m>\gcd(a,c) = \gcd(b,c) =1</m> if and only if
        <m>\gcd(ab,c) = 1</m> for integers <m>a</m>, <m>b</m>,
        and <m>c</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="27">
    <statement>
      <p>
        Let <m>a, b, c \in {\mathbb Z}</m>.
        Prove that if <m>\gcd(a,b) = 1</m> and
        <m>a \mid bc</m>, then <m>a \mid c</m>.
      </p>
    </statement>
    <hint>
      <p>
        Since <m>\gcd(a,b) = 1</m>,
        there exist integers <m>r</m> and <m>s</m> such that <m>ar + bs = 1</m>.
        Thus, <m>acr + bcs = c</m>.
        Since <m>a</m> divides both <m>bc</m> and itself,
        <m>a</m> must divide <m>c</m>.
      </p>
    </hint>
  </exercise>
  <exercise number="28">
    <statement>
      <p>
        Let <m>p \geq 2</m>.
        Prove that if <m>2^p - 1</m> is prime,
        then <m>p</m> must also be prime.
      </p>
    </statement>
  </exercise>
  <exercise number="29">
    <statement>
      <p>
        Prove that there are an infinite number of primes of the form <m>6n + 5</m>.
      </p>
    </statement>
    <hint>
      <p>
        Every prime must be of the form 2, 3, <m>6n + 1</m>, or <m>6n + 5</m>.
        Suppose there are only finitely many primes of the form <m>6k + 5</m>.
      </p>
    </hint>
  </exercise>
  <exercise number="30">
    <statement>
      <p>
        Prove that there are an infinite number of primes of the form <m>4n - 1</m>.
      </p>
    </statement>
  </exercise>
  <exercise number="31">
    <statement>
      <p>
        Using the fact that 2 is prime,
        show that there do not exist integers <m>p</m> and <m>q</m> such that <m>p^2 = 2 q^2</m>.
        Demonstrate that therefore
        <m>\sqrt{2}</m> cannot be a rational number.
      </p>
    </statement>
  </exercise>
</exercises>

1.

View Source for exercise
<exercise number="1">
  <statement>
    <p>
      Prove that
      <me>
        1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6}
      </me>
      for <m>n \in {\mathbb N}</m>.
    </p>
  </statement>
  <answer>
    <p>
      The base case,
      <m>S(1): [1(1 + 1)(2(1) + 1)]/6 = 1 = 1^2</m> is true.
    </p>
    <p>
      Assume that <m>S(k): 1^2 + 2^2 + \cdots + k^2 = [k(k + 1)(2k + 1)]/6</m> is true.
      Then
      <md>
        <mrow>1^2 + 2^2 + \cdots + k^2 + (k + 1)^2 &amp; = [k(k + 1)(2k + 1)]/6 + (k + 1)^2</mrow>
        <mrow>&amp; = [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6</mrow>
      </md>,
      and so <m>S(k + 1)</m> is true.
      Thus, <m>S(n)</m> is true for all positive integers <m>n</m>.
    </p>
  </answer>
</exercise>
Prove that
\begin{equation*} 1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \end{equation*}
for \(n \in {\mathbb N}\text{.}\)
Answer.
View Source for answer
<answer>
  <p>
    The base case,
    <m>S(1): [1(1 + 1)(2(1) + 1)]/6 = 1 = 1^2</m> is true.
  </p>
  <p>
    Assume that <m>S(k): 1^2 + 2^2 + \cdots + k^2 = [k(k + 1)(2k + 1)]/6</m> is true.
    Then
    <md>
      <mrow>1^2 + 2^2 + \cdots + k^2 + (k + 1)^2 &amp; = [k(k + 1)(2k + 1)]/6 + (k + 1)^2</mrow>
      <mrow>&amp; = [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6</mrow>
    </md>,
    and so <m>S(k + 1)</m> is true.
    Thus, <m>S(n)</m> is true for all positive integers <m>n</m>.
  </p>
</answer>
The base case, \(S(1): [1(1 + 1)(2(1) + 1)]/6 = 1 = 1^2\) is true.
Assume that \(S(k): 1^2 + 2^2 + \cdots + k^2 = [k(k + 1)(2k + 1)]/6\) is true. Then
\begin{align*} 1^2 + 2^2 + \cdots + k^2 + (k + 1)^2 & = [k(k + 1)(2k + 1)]/6 + (k + 1)^2\\ & = [(k + 1)((k + 1) + 1)(2(k + 1) + 1)]/6\text{,} \end{align*}
and so \(S(k + 1)\) is true. Thus, \(S(n)\) is true for all positive integers \(n\text{.}\)

2.

View Source for exercise
<exercise number="2">
  <statement>
    <p>
      Prove that
      <me>
        1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n + 1)^2}{4}
      </me>
      for <m>n \in {\mathbb N}</m>.
    </p>
  </statement>
</exercise>
Prove that
\begin{equation*} 1^3 + 2^3 + \cdots + n^3 = \frac{n^2(n + 1)^2}{4} \end{equation*}
for \(n \in {\mathbb N}\text{.}\)

3.

View Source for exercise
<exercise number="3">
  <statement>
    <p>
      Prove that <m>n! \gt 2^n</m> for <m>n \geq 4</m>.
    </p>
  </statement>
  <answer>
    <p>
      The base case, <m>S(4): 4! = 24 \gt 16 =2^4</m> is true.
      Assume <m>S(k): k! \gt 2^k</m> is true.
      Then <m>(k + 1)! = k! (k + 1) \gt 2^k \cdot 2 = 2^{k + 1}</m>,
      so <m>S(k + 1)</m> is true.
      Thus, <m>S(n)</m> is true for all positive integers <m>n</m>.
    </p>
  </answer>
</exercise>
Prove that \(n! \gt 2^n\) for \(n \geq 4\text{.}\)
Answer.
View Source for answer
<answer>
  <p>
    The base case, <m>S(4): 4! = 24 \gt 16 =2^4</m> is true.
    Assume <m>S(k): k! \gt 2^k</m> is true.
    Then <m>(k + 1)! = k! (k + 1) \gt 2^k \cdot 2 = 2^{k + 1}</m>,
    so <m>S(k + 1)</m> is true.
    Thus, <m>S(n)</m> is true for all positive integers <m>n</m>.
  </p>
</answer>
The base case, \(S(4): 4! = 24 \gt 16 =2^4\) is true. Assume \(S(k): k! \gt 2^k\) is true. Then \((k + 1)! = k! (k + 1) \gt 2^k \cdot 2 = 2^{k + 1}\text{,}\) so \(S(k + 1)\) is true. Thus, \(S(n)\) is true for all positive integers \(n\text{.}\)

4.

View Source for exercise
<exercise number="4">
  <statement>
    <p>
      Prove that
      <me>
        x + 4x + 7x + \cdots + (3n - 2)x = \frac{n(3n - 1)x}{2}
      </me>
      for <m>n \in {\mathbb N}</m>.
    </p>
  </statement>
</exercise>
Prove that
\begin{equation*} x + 4x + 7x + \cdots + (3n - 2)x = \frac{n(3n - 1)x}{2} \end{equation*}
for \(n \in {\mathbb N}\text{.}\)

5.

View Source for exercise
<exercise number="5">
  <statement>
    <p>
      Prove that <m>10^{n + 1} + 10^n + 1</m> is divisible by 3 for <m>n \in {\mathbb N}</m>.
    </p>
  </statement>
</exercise>
Prove that \(10^{n + 1} + 10^n + 1\) is divisible by 3 for \(n \in {\mathbb N}\text{.}\)

6.

View Source for exercise
<exercise number="6">
  <statement>
    <p>
      Prove that <m>4 \cdot 10^{2n} + 9 \cdot 10^{2n - 1} + 5</m> is divisible by 99 for <m>n \in {\mathbb N}</m>.
    </p>
  </statement>
</exercise>
Prove that \(4 \cdot 10^{2n} + 9 \cdot 10^{2n - 1} + 5\) is divisible by 99 for \(n \in {\mathbb N}\text{.}\)

7.

View Source for exercise
<exercise number="7">
  <statement>
    <p>
      Show that
      <me>
        \sqrt[n]{a_1 a_2 \cdots a_n} \leq \frac{1}{n} \sum_{k = 1}^{n} a_k
      </me>.
    </p>
  </statement>
</exercise>
Show that
\begin{equation*} \sqrt[n]{a_1 a_2 \cdots a_n} \leq \frac{1}{n} \sum_{k = 1}^{n} a_k\text{.} \end{equation*}

8.

View Source for exercise
<exercise number="8">
  <statement>
    <p>
      Use induction to prove that
      <m>1 + 2 + 2^2 + \cdots + 2^n = 2^{n + 1} - 1</m> for <m>n \in {\mathbb N}</m>.
    </p>
  </statement>
</exercise>
Use induction to prove that \(1 + 2 + 2^2 + \cdots + 2^n = 2^{n + 1} - 1\) for \(n \in {\mathbb N}\text{.}\)

9.

View Source for exercise
<exercise number="9">
  <statement>
    <p>
      Prove the Leibniz rule for <m>f^{(n)} (x)</m>,
      where <m>f^{(n)}</m> is the <m>n</m>th derivative of <m>f</m>; that is,
      show that
      <me>
        (fg)^{(n)}(x) = \sum_{k = 0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n - k)}(x)
      </me>.
    </p>
  </statement>
  <hint>
    <p>
      Follow the proof in <xref ref="example-integers-binomial-theorem" />.
    </p>
  </hint>
</exercise>
Prove the Leibniz rule for \(f^{(n)} (x)\text{,}\) where \(f^{(n)}\) is the \(n\)th derivative of \(f\text{;}\) that is, show that
\begin{equation*} (fg)^{(n)}(x) = \sum_{k = 0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n - k)}(x)\text{.} \end{equation*}
Hint.
View Source for hint
<hint>
  <p>
    Follow the proof in <xref ref="example-integers-binomial-theorem" />.
  </p>
</hint>
Follow the proof in Example 2.1.4.

10.

View Source for exercise
<exercise number="10">
  <statement>
    <p>
      Prove that
      <me>
        \frac{1}{2}+ \frac{1}{6} + \cdots + \frac{1}{n(n + 1)} = \frac{n}{n + 1}
      </me>
      for <m>n \in {\mathbb N}</m>.
    </p>
  </statement>
</exercise>
Prove that
\begin{equation*} \frac{1}{2}+ \frac{1}{6} + \cdots + \frac{1}{n(n + 1)} = \frac{n}{n + 1} \end{equation*}
for \(n \in {\mathbb N}\text{.}\)

11.

View Source for exercise
<exercise number="11">
  <statement>
    <p>
      If <m>x</m> is a nonnegative real number,
      then show that <m>(1 + x)^n - 1 \geq nx</m> for <m>n = 0, 1, 2, \ldots</m>.
    </p>
  </statement>
  <hint>
    <p>
      The base case,
      <m>S(0): (1 + x)^0 - 1 = 0 \geq 0 = 0 \cdot x</m> is true.
      Assume <m>S(k): (1 + x)^k -1 \geq kx</m> is true.
      Then
      <md>
        <mrow>(1 + x)^{k + 1} - 1 &amp; = (1 + x)(1 + x)^k -1</mrow>
        <mrow>&amp; = (1 + x)^k + x(1 + x)^k - 1</mrow>
        <mrow>&amp; \geq kx + x(1 + x)^k</mrow>
        <mrow>&amp; \geq kx + x</mrow>
        <mrow>&amp; = (k + 1)x</mrow>
      </md>,
      so <m>S(k + 1)</m> is true.
      Therefore, <m>S(n)</m> is true for all positive integers <m>n</m>.
    </p>
  </hint>
</exercise>
If \(x\) is a nonnegative real number, then show that \((1 + x)^n - 1 \geq nx\) for \(n = 0, 1, 2, \ldots\text{.}\)
Hint.
View Source for hint
<hint>
  <p>
    The base case,
    <m>S(0): (1 + x)^0 - 1 = 0 \geq 0 = 0 \cdot x</m> is true.
    Assume <m>S(k): (1 + x)^k -1 \geq kx</m> is true.
    Then
    <md>
      <mrow>(1 + x)^{k + 1} - 1 &amp; = (1 + x)(1 + x)^k -1</mrow>
      <mrow>&amp; = (1 + x)^k + x(1 + x)^k - 1</mrow>
      <mrow>&amp; \geq kx + x(1 + x)^k</mrow>
      <mrow>&amp; \geq kx + x</mrow>
      <mrow>&amp; = (k + 1)x</mrow>
    </md>,
    so <m>S(k + 1)</m> is true.
    Therefore, <m>S(n)</m> is true for all positive integers <m>n</m>.
  </p>
</hint>
The base case, \(S(0): (1 + x)^0 - 1 = 0 \geq 0 = 0 \cdot x\) is true. Assume \(S(k): (1 + x)^k -1 \geq kx\) is true. Then
\begin{align*} (1 + x)^{k + 1} - 1 & = (1 + x)(1 + x)^k -1\\ & = (1 + x)^k + x(1 + x)^k - 1\\ & \geq kx + x(1 + x)^k\\ & \geq kx + x\\ & = (k + 1)x\text{,} \end{align*}
so \(S(k + 1)\) is true. Therefore, \(S(n)\) is true for all positive integers \(n\text{.}\)

12. Power Sets.

View Source for exercise
<exercise number="12">
  <title>Power Sets</title>
  <statement>
    <p>
      Let <m>X</m> be a set.
      Define the <term>power set</term> of <m>X</m>,
      denoted <m>{\mathcal P}(X)</m>,
      to be the set of all subsets  of <m>X</m>.
      <notation>
        <usage><m>\mathcal P(X)</m></usage>
        <description>power set of <m>X</m></description>
      </notation>
      For example,
      <me>
        {\mathcal P}( \{a, b\} ) = \{ \emptyset, \{a\}, \{b\}, \{a, b\} \}
      </me>.
      For every positive integer <m>n</m>,
      show that a set with exactly <m>n</m> elements has a power set with exactly <m>2^n</m> elements.
    </p>
  </statement>
</exercise>
Let \(X\) be a set. Define the power set of \(X\text{,}\) denoted \({\mathcal P}(X)\text{,}\) to be the set of all subsets of \(X\text{.}\) For example,
\begin{equation*} {\mathcal P}( \{a, b\} ) = \{ \emptyset, \{a\}, \{b\}, \{a, b\} \}\text{.} \end{equation*}
For every positive integer \(n\text{,}\) show that a set with exactly \(n\) elements has a power set with exactly \(2^n\) elements.

13.

View Source for exercise
<exercise number="13">
  <statement>
    <p>
      Prove that the two principles of mathematical induction stated in <xref ref="section-math-induction" /> are equivalent.
    </p>
  </statement>
</exercise>
Prove that the two principles of mathematical induction stated in Section 2.1 are equivalent.

14.

View Source for exercise
<exercise number="14">
  <statement>
    <p>
      Show that the Principle of Well-Ordering for the natural numbers implies that 1 is the smallest natural number.
      Use this result to show that the Principle of Well-Ordering implies the Principle of Mathematical Induction;
      that is, show that if <m>S \subset {\mathbb N}</m> such that <m>1 \in S</m> and
      <m>n + 1 \in S</m> whenever <m>n \in S</m>,
      then <m>S = {\mathbb N}</m>.
    </p>
  </statement>
</exercise>
Show that the Principle of Well-Ordering for the natural numbers implies that 1 is the smallest natural number. Use this result to show that the Principle of Well-Ordering implies the Principle of Mathematical Induction; that is, show that if \(S \subset {\mathbb N}\) such that \(1 \in S\) and \(n + 1 \in S\) whenever \(n \in S\text{,}\) then \(S = {\mathbb N}\text{.}\)

15.

View Source for exercise
<exercise number="15">
  <statement>
    <p>
      For each of the following pairs of numbers <m>a</m> and <m>b</m>,
      calculate <m>\gcd(a,b)</m> and find integers <m>r</m> and <m>s</m> such that <m>\gcd(a,b) = ra + sb</m>.
    </p>
    <ol cols="2">
      <li>
        <p>
          14 and 39
        </p>
      </li>
      <li>
        <p>
          234 and 165
        </p>
      </li>
      <li>
        <p>
          1739 and 9923
        </p>
      </li>
      <li>
        <p>
          471 and 562
        </p>
      </li>
      <li>
        <p>
          23,771 and 19,945
        </p>
      </li>
      <li>
        <p>
          <m>-4357</m> and 3754
        </p>
      </li>
    </ol>
  </statement>
</exercise>
For each of the following pairs of numbers \(a\) and \(b\text{,}\) calculate \(\gcd(a,b)\) and find integers \(r\) and \(s\) such that \(\gcd(a,b) = ra + sb\text{.}\)
  1. 14 and 39
  2. 234 and 165
  3. 1739 and 9923
  4. 471 and 562
  5. 23,771 and 19,945
  6. \(-4357\) and 3754

16.

View Source for exercise
<exercise number="16" xml:id="exercise-integers-gcd-1">
  <statement>
    <p>
      Let <m>a</m> and <m>b</m> be nonzero integers.
      If there exist integers <m>r</m> and <m>s</m> such that <m>ar + bs =1</m>,
      show that <m>a</m> and <m>b</m> are relatively prime.
    </p>
  </statement>
</exercise>
Let \(a\) and \(b\) be nonzero integers. If there exist integers \(r\) and \(s\) such that \(ar + bs =1\text{,}\) show that \(a\) and \(b\) are relatively prime.

17. Fibonacci Numbers.

View Source for exercise
<exercise number="17">
  <title>Fibonacci Numbers</title>
  <statement>
    <p>
      The Fibonacci numbers are
      <me>
        1, 1, 2, 3, 5, 8, 13, 21, \ldots
      </me>.
      We can define them inductively by <m>f_1 = 1</m>, <m>f_2 = 1</m>,
      and <m>f_{n + 2} = f_{n + 1} + f_n</m> for <m>n \in {\mathbb N}</m>.
    </p>
    <ol>
      <li xml:id="fn_ineq">
        <p>
          Prove that <m>f_n \lt 2^n</m>.
        </p>
      </li>
      <li xml:id="fn_prod">
        <p>
          Prove that <m>f_{n + 1} f_{n - 1} = f^2_n + (-1)^n</m>,
          <m>n \geq 2</m>.
        </p>
      </li>
      <li xml:id="fn_formula">
        <p>
          Prove that <m>f_n = [(1 + \sqrt{5}\, )^n - (1 - \sqrt{5}\, )^n]/ 2^n \sqrt{5}</m>.
        </p>
      </li>
      <li xml:id="fn_ratio">
        <p>
          Show that <m>\lim_{n \rightarrow \infty} f_n / f_{n + 1} = (\sqrt{5} - 1)/2</m>.
        </p>
      </li>
      <li xml:id="fn_coprime">
        <p>
          Prove that <m>f_n</m> and <m>f_{n + 1}</m> are relatively prime.
        </p>
      </li>
    </ol>
  </statement>
  <hint>
    <p>
      For <xref ref="fn_ineq" /> and <xref ref="fn_prod" /> use mathematical induction.
      <xref ref="fn_formula" /> Show that <m>f_1 = 1</m>,
      <m>f_2 = 1</m>, and <m>f_{n + 2} = f_{n + 1} + f_n</m>.
      <xref ref="fn_ratio" /> Use part <xref ref="fn_formula" />.
      <xref ref="fn_coprime" /> Use part <xref ref="fn_prod" /> and <xref ref="exercise-integers-gcd-1" />.
    </p>
  </hint>
</exercise>
The Fibonacci numbers are
\begin{equation*} 1, 1, 2, 3, 5, 8, 13, 21, \ldots\text{.} \end{equation*}
We can define them inductively by \(f_1 = 1\text{,}\) \(f_2 = 1\text{,}\) and \(f_{n + 2} = f_{n + 1} + f_n\) for \(n \in {\mathbb N}\text{.}\)
  1. Prove that \(f_n \lt 2^n\text{.}\)
  2. Prove that \(f_{n + 1} f_{n - 1} = f^2_n + (-1)^n\text{,}\) \(n \geq 2\text{.}\)
  3. Prove that \(f_n = [(1 + \sqrt{5}\, )^n - (1 - \sqrt{5}\, )^n]/ 2^n \sqrt{5}\text{.}\)
  4. Show that \(\lim_{n \rightarrow \infty} f_n / f_{n + 1} = (\sqrt{5} - 1)/2\text{.}\)
  5. Prove that \(f_n\) and \(f_{n + 1}\) are relatively prime.
Hint.
View Source for hint
<hint>
  <p>
    For <xref ref="fn_ineq" /> and <xref ref="fn_prod" /> use mathematical induction.
    <xref ref="fn_formula" /> Show that <m>f_1 = 1</m>,
    <m>f_2 = 1</m>, and <m>f_{n + 2} = f_{n + 1} + f_n</m>.
    <xref ref="fn_ratio" /> Use part <xref ref="fn_formula" />.
    <xref ref="fn_coprime" /> Use part <xref ref="fn_prod" /> and <xref ref="exercise-integers-gcd-1" />.
  </p>
</hint>
For Item 2.4.17.a and Item 2.4.17.b use mathematical induction. Item 2.4.17.c Show that \(f_1 = 1\text{,}\) \(f_2 = 1\text{,}\) and \(f_{n + 2} = f_{n + 1} + f_n\text{.}\) Item 2.4.17.d Use part Item 2.4.17.c. Item 2.4.17.e Use part Item 2.4.17.b and Exercise 2.4.16.

18.

View Source for exercise
<exercise number="18">
  <statement>
    <p>
      Let <m>a</m> and <m>b</m> be integers such that <m>\gcd(a,b) = 1</m>.
      Let <m>r</m> and <m>s</m> be integers such that <m>ar + bs =1</m>.
      Prove that
      <me>
        \gcd(a,s) = \gcd(r,b) = \gcd(r,s) =  1
      </me>.
    </p>
  </statement>
</exercise>
Let \(a\) and \(b\) be integers such that \(\gcd(a,b) = 1\text{.}\) Let \(r\) and \(s\) be integers such that \(ar + bs =1\text{.}\) Prove that
\begin{equation*} \gcd(a,s) = \gcd(r,b) = \gcd(r,s) = 1\text{.} \end{equation*}

19.

View Source for exercise
<exercise number="19">
  <statement>
    <p>
      Let <m>x, y \in {\mathbb N}</m> be relatively prime.
      If <m>xy</m> is a perfect square,
      prove that <m>x</m> and <m>y</m> must both be perfect squares.
    </p>
  </statement>
  <hint>
    <p>
      Use the Fundamental Theorem of Arithmetic.
    </p>
  </hint>
</exercise>
Let \(x, y \in {\mathbb N}\) be relatively prime. If \(xy\) is a perfect square, prove that \(x\) and \(y\) must both be perfect squares.
Hint.
View Source for hint
<hint>
  <p>
    Use the Fundamental Theorem of Arithmetic.
  </p>
</hint>
Use the Fundamental Theorem of Arithmetic.

20.

View Source for exercise
<exercise number="20">
  <statement>
    <p>
      Using the division algorithm,
      show that every perfect square is of the form <m>4k</m> or <m>4k + 1</m> for some nonnegative integer <m>k</m>.
    </p>
  </statement>
</exercise>
Using the division algorithm, show that every perfect square is of the form \(4k\) or \(4k + 1\) for some nonnegative integer \(k\text{.}\)

21.

View Source for exercise
<exercise number="21">
  <statement>
    <p>
      Suppose that <m>a, b, r, s</m> are pairwise relatively prime and that
      <md>
        <mrow>a^2 + b^2 &amp; = r^2</mrow>
        <mrow>a^2 - b^2 &amp; = s^2</mrow>
      </md>.
    </p>
    <p>
      Prove that <m>a</m>, <m>r</m>,
      and <m>s</m> are odd and <m>b</m> is even.
    </p>
  </statement>
</exercise>
Suppose that \(a, b, r, s\) are pairwise relatively prime and that
\begin{align*} a^2 + b^2 & = r^2\\ a^2 - b^2 & = s^2\text{.} \end{align*}
Prove that \(a\text{,}\) \(r\text{,}\) and \(s\) are odd and \(b\) is even.

22.

View Source for exercise
<exercise number="22">
  <statement>
    <p>
      Let <m>n \in {\mathbb N}</m>.
      Use the division algorithm to prove that every integer is congruent mod <m>n</m> to precisely one of the integers <m>0, 1, \ldots, n-1</m>.
      Conclude that if <m>r</m> is an integer,
      then there is exactly one <m>s</m> in <m>{\mathbb Z}</m> such that
      <m>0 \leq s \lt n</m> and <m>[r] = [s]</m>.
      Hence, the integers are indeed partitioned by congruence mod <m>n</m>.
    </p>
  </statement>
</exercise>
Let \(n \in {\mathbb N}\text{.}\) Use the division algorithm to prove that every integer is congruent mod \(n\) to precisely one of the integers \(0, 1, \ldots, n-1\text{.}\) Conclude that if \(r\) is an integer, then there is exactly one \(s\) in \({\mathbb Z}\) such that \(0 \leq s \lt n\) and \([r] = [s]\text{.}\) Hence, the integers are indeed partitioned by congruence mod \(n\text{.}\)

23.

View Source for exercise
<exercise number="23">
  <statement>
    <p>
      Define the <term>least common multiple</term>
      of two nonzero integers <m>a</m> and <m>b</m>,
      denoted by <m>\lcm(a,b)</m>,
      to be the nonnegative integer <m>m</m> such that both <m>a</m> and <m>b</m> divide <m>m</m>,
      and if <m>a</m> and <m>b</m> divide any other integer <m>n</m>,
      then <m>m</m> also divides <m>n</m>.
      <notation>
        <usage><m>\lcm(m,n)</m></usage>
        <description>the least common multiple of <m>m</m> and <m>n</m></description>
      </notation>
      Prove that any two integers <m>a</m> and <m>b</m> have a unique least common multiple.
    </p>
  </statement>
  <hint>
    <p>
      Let <m>S = \{s \in {\mathbb N} : a \mid s</m>, <m>b \mid s \}</m>.
      Then <m>S \neq \emptyset</m>, since <m>|ab| \in S</m>.
      By the Principle of Well-Ordering,
      <m>S</m> contains a least element <m>m</m>.
      To show uniqueness, suppose that <m>a \mid n</m> and
      <m>b \mid n</m> for some <m>n \in {\mathbb N}</m>.
      By the division algorithm,
      there exist unique integers <m>q</m> and <m>r</m> such that <m>n = mq + r</m>,
      where <m>0 \leq r \lt m</m>.
      Since <m>a</m> and <m>b</m> divide both <m>m</m>, and <m>n</m>,
      it must be the case that <m>a</m> and <m>b</m> both divide <m>r</m>.
      Thus, <m>r = 0</m> by the minimality of <m>m</m>.
      Therefore, <m>m \mid n</m>.
    </p>
  </hint>
</exercise>
Define the least common multiple of two nonzero integers \(a\) and \(b\text{,}\) denoted by \(\lcm(a,b)\text{,}\) to be the nonnegative integer \(m\) such that both \(a\) and \(b\) divide \(m\text{,}\) and if \(a\) and \(b\) divide any other integer \(n\text{,}\) then \(m\) also divides \(n\text{.}\) Prove that any two integers \(a\) and \(b\) have a unique least common multiple.
Hint.
View Source for hint
<hint>
  <p>
    Let <m>S = \{s \in {\mathbb N} : a \mid s</m>, <m>b \mid s \}</m>.
    Then <m>S \neq \emptyset</m>, since <m>|ab| \in S</m>.
    By the Principle of Well-Ordering,
    <m>S</m> contains a least element <m>m</m>.
    To show uniqueness, suppose that <m>a \mid n</m> and
    <m>b \mid n</m> for some <m>n \in {\mathbb N}</m>.
    By the division algorithm,
    there exist unique integers <m>q</m> and <m>r</m> such that <m>n = mq + r</m>,
    where <m>0 \leq r \lt m</m>.
    Since <m>a</m> and <m>b</m> divide both <m>m</m>, and <m>n</m>,
    it must be the case that <m>a</m> and <m>b</m> both divide <m>r</m>.
    Thus, <m>r = 0</m> by the minimality of <m>m</m>.
    Therefore, <m>m \mid n</m>.
  </p>
</hint>
Let \(S = \{s \in {\mathbb N} : a \mid s\text{,}\) \(b \mid s \}\text{.}\) Then \(S \neq \emptyset\text{,}\) since \(|ab| \in S\text{.}\) By the Principle of Well-Ordering, \(S\) contains a least element \(m\text{.}\) To show uniqueness, suppose that \(a \mid n\) and \(b \mid n\) for some \(n \in {\mathbb N}\text{.}\) By the division algorithm, there exist unique integers \(q\) and \(r\) such that \(n = mq + r\text{,}\) where \(0 \leq r \lt m\text{.}\) Since \(a\) and \(b\) divide both \(m\text{,}\) and \(n\text{,}\) it must be the case that \(a\) and \(b\) both divide \(r\text{.}\) Thus, \(r = 0\) by the minimality of \(m\text{.}\) Therefore, \(m \mid n\text{.}\)

24.

View Source for exercise
<exercise number="24" xml:id="exercise-integers-lcm-gcd">
  <statement>
    <p>
      If <m>d= \gcd(a, b)</m> and <m>m = \lcm(a, b)</m>,
      prove that <m>dm = |ab|</m>.
    </p>
  </statement>
</exercise>
If \(d= \gcd(a, b)\) and \(m = \lcm(a, b)\text{,}\) prove that \(dm = |ab|\text{.}\)

25.

View Source for exercise
<exercise number="25">
  <statement>
    <p>
      Show that <m>\lcm(a,b) = ab</m> if and only if <m>\gcd(a,b) = 1</m>.
    </p>
  </statement>
</exercise>
Show that \(\lcm(a,b) = ab\) if and only if \(\gcd(a,b) = 1\text{.}\)

26.

View Source for exercise
<exercise number="26">
  <statement>
    <p>
      Prove that <m>\gcd(a,c) = \gcd(b,c) =1</m> if and only if
      <m>\gcd(ab,c) = 1</m> for integers <m>a</m>, <m>b</m>,
      and <m>c</m>.
    </p>
  </statement>
</exercise>
Prove that \(\gcd(a,c) = \gcd(b,c) =1\) if and only if \(\gcd(ab,c) = 1\) for integers \(a\text{,}\) \(b\text{,}\) and \(c\text{.}\)

27.

View Source for exercise
<exercise number="27">
  <statement>
    <p>
      Let <m>a, b, c \in {\mathbb Z}</m>.
      Prove that if <m>\gcd(a,b) = 1</m> and
      <m>a \mid bc</m>, then <m>a \mid c</m>.
    </p>
  </statement>
  <hint>
    <p>
      Since <m>\gcd(a,b) = 1</m>,
      there exist integers <m>r</m> and <m>s</m> such that <m>ar + bs = 1</m>.
      Thus, <m>acr + bcs = c</m>.
      Since <m>a</m> divides both <m>bc</m> and itself,
      <m>a</m> must divide <m>c</m>.
    </p>
  </hint>
</exercise>
Let \(a, b, c \in {\mathbb Z}\text{.}\) Prove that if \(\gcd(a,b) = 1\) and \(a \mid bc\text{,}\) then \(a \mid c\text{.}\)
Hint.
View Source for hint
<hint>
  <p>
    Since <m>\gcd(a,b) = 1</m>,
    there exist integers <m>r</m> and <m>s</m> such that <m>ar + bs = 1</m>.
    Thus, <m>acr + bcs = c</m>.
    Since <m>a</m> divides both <m>bc</m> and itself,
    <m>a</m> must divide <m>c</m>.
  </p>
</hint>
Since \(\gcd(a,b) = 1\text{,}\) there exist integers \(r\) and \(s\) such that \(ar + bs = 1\text{.}\) Thus, \(acr + bcs = c\text{.}\) Since \(a\) divides both \(bc\) and itself, \(a\) must divide \(c\text{.}\)

28.

View Source for exercise
<exercise number="28">
  <statement>
    <p>
      Let <m>p \geq 2</m>.
      Prove that if <m>2^p - 1</m> is prime,
      then <m>p</m> must also be prime.
    </p>
  </statement>
</exercise>
Let \(p \geq 2\text{.}\) Prove that if \(2^p - 1\) is prime, then \(p\) must also be prime.

29.

View Source for exercise
<exercise number="29">
  <statement>
    <p>
      Prove that there are an infinite number of primes of the form <m>6n + 5</m>.
    </p>
  </statement>
  <hint>
    <p>
      Every prime must be of the form 2, 3, <m>6n + 1</m>, or <m>6n + 5</m>.
      Suppose there are only finitely many primes of the form <m>6k + 5</m>.
    </p>
  </hint>
</exercise>
Prove that there are an infinite number of primes of the form \(6n + 5\text{.}\)
Hint.
View Source for hint
<hint>
  <p>
    Every prime must be of the form 2, 3, <m>6n + 1</m>, or <m>6n + 5</m>.
    Suppose there are only finitely many primes of the form <m>6k + 5</m>.
  </p>
</hint>
Every prime must be of the form 2, 3, \(6n + 1\text{,}\) or \(6n + 5\text{.}\) Suppose there are only finitely many primes of the form \(6k + 5\text{.}\)

30.

View Source for exercise
<exercise number="30">
  <statement>
    <p>
      Prove that there are an infinite number of primes of the form <m>4n - 1</m>.
    </p>
  </statement>
</exercise>
Prove that there are an infinite number of primes of the form \(4n - 1\text{.}\)

31.

View Source for exercise
<exercise number="31">
  <statement>
    <p>
      Using the fact that 2 is prime,
      show that there do not exist integers <m>p</m> and <m>q</m> such that <m>p^2 = 2 q^2</m>.
      Demonstrate that therefore
      <m>\sqrt{2}</m> cannot be a rational number.
    </p>
  </statement>
</exercise>
Using the fact that 2 is prime, show that there do not exist integers \(p\) and \(q\) such that \(p^2 = 2 q^2\text{.}\) Demonstrate that therefore \(\sqrt{2}\) cannot be a rational number.