Skip to main content
Logo image

PreTeXt Sample Book: Abstract Algebra (SAMPLE ONLY)

Worksheet 3.26 A “Group Work” Worksheet

View Source for worksheet
<worksheet groupwork="yes" groupsize="2" label="worksheet-groupwork">
  <title>A
  <q>Group Work</q>
  Worksheet</title>
  <p>
    This is a <tag>worksheet</tag> which has a <attr>groupwork</attr> attribute set to <c>yes</c>,
    along with a <attr>label</attr> attribute to assist with the Runestone database.
    Note, you can also set a <attr>groupsize</attr> attribute.
    When hosted on Runestone,
    the exercises within will be available for a group of students to submit together.
  </p>
  <exercise label="groupwork-multiple-choice">
    <title>Multiple-Choice, Group Work</title>
    <idx>stop signs</idx>
    <idx>group work</idx>
    <statement>
      <p>
        What color is a stop sign?
      </p>
    </statement>
    <choices>
    <choice>
    <statement>
      <p>
        Green
      </p>
    </statement>
    <feedback>
      <p>
        Green means
        <q>go!</q>.
      </p>
    </feedback>
    </choice>
    <choice correct="yes">
    <statement>
      <p>
        Red
      </p>
    </statement>
    <feedback>
      <p>
        Red is universally used for prohibited activities or serious warnings.
      </p>
    </feedback>
    </choice>
    <choice>
    <statement>
      <p>
        White
      </p>
    </statement>
    <feedback>
      <p>
        White might be hard to see.
      </p>
    </feedback>
    </choice>
    </choices>
    <hint>
      <p>
        What did you see last time you went driving?
      </p>
    </hint>
    <hint>
      <p>
        Maybe go out for a drive?
      </p>
    </hint>
  </exercise>
  <p>
    Worksheets allow for material interleaved with the <tag>exercise</tag> throughout.
  </p>
  <exercise label="groupwork-number-theory" adaptive="yes" language="natural">
    <title>Parsons Problem, Group Work</title>
    <idx>even numbers</idx>
    <idx>groupwork</idx>
    <statement>
      <p>
        Create a proof of the theorem: If <m>n</m> is an even number,
        then <m>n\equiv 0\mod 2</m>.
      </p>
    </statement>
    <blocks>
    <block order="2">
    <p>
      Suppose <m>n</m> is even.
    </p>
    </block>
    <block order="3">
    <choice>
    <p>
      Then <m>n</m> is a prime number.
    </p>
    </choice>
    <choice correct="yes">
    <p>
      Then there exists an <m>m</m> so that <m>n = 2m</m>.
    </p>
    </choice>
    <choice>
    <p>
      Then there exists an <m>m</m> so that <m>n = 2m + 1</m>.
    </p>
    </choice>
    </block>
    <block order="1" correct="no">
    <p>
      Click the heels of your ruby slippers together three times.
    </p>
    </block>
    <block order="5">
    <p>
      So <m>n = 2m + 0</m>.
    </p>
    <p>
      This is a superfluous second paragraph in this block.
    </p>
    </block>
    <block order="4">
    <p>
      Thus <m>n\equiv 0\mod 2</m>.
    </p>
    </block>
    <block order="6" correct="no">
    <p>
      And a little bit of irrelevant multi-line math
      <md>
        <mrow>c^2&amp;a^2+b^2</mrow>
        <mrow>&amp;x^2+y^2</mrow>
      </md>.
    </p>
    </block>
    </blocks>
    <hint>
      <p>
        Dorothy will not be much help with this proof.
      </p>
    </hint>
  </exercise>
</worksheet>
This is a <worksheet> which has a @groupwork attribute set to yes, along with a @label attribute to assist with the Runestone database. Note, you can also set a @groupsize attribute. When hosted on Runestone, the exercises within will be available for a group of students to submit together.

1. Multiple-Choice, Group Work.

View Source for exercise
<exercise label="groupwork-multiple-choice">
  <title>Multiple-Choice, Group Work</title>
  <idx>stop signs</idx>
  <idx>group work</idx>
  <statement>
    <p>
      What color is a stop sign?
    </p>
  </statement>
  <choices>
  <choice>
  <statement>
    <p>
      Green
    </p>
  </statement>
  <feedback>
    <p>
      Green means
      <q>go!</q>.
    </p>
  </feedback>
  </choice>
  <choice correct="yes">
  <statement>
    <p>
      Red
    </p>
  </statement>
  <feedback>
    <p>
      Red is universally used for prohibited activities or serious warnings.
    </p>
  </feedback>
  </choice>
  <choice>
  <statement>
    <p>
      White
    </p>
  </statement>
  <feedback>
    <p>
      White might be hard to see.
    </p>
  </feedback>
  </choice>
  </choices>
  <hint>
    <p>
      What did you see last time you went driving?
    </p>
  </hint>
  <hint>
    <p>
      Maybe go out for a drive?
    </p>
  </hint>
</exercise>
    What color is a stop sign?
  • Green
  • Green means “go!”.
  • Red
  • Red is universally used for prohibited activities or serious warnings.
  • White
  • White might be hard to see.
Hint 1.
View Source for hint
<hint>
  <p>
    What did you see last time you went driving?
  </p>
</hint>
What did you see last time you went driving?
Hint 2.
View Source for hint
<hint>
  <p>
    Maybe go out for a drive?
  </p>
</hint>
Maybe go out for a drive?
Worksheets allow for material interleaved with the <exercise> throughout.

2. Parsons Problem, Group Work.

View Source for exercise
<exercise label="groupwork-number-theory" adaptive="yes" language="natural">
  <title>Parsons Problem, Group Work</title>
  <idx>even numbers</idx>
  <idx>groupwork</idx>
  <statement>
    <p>
      Create a proof of the theorem: If <m>n</m> is an even number,
      then <m>n\equiv 0\mod 2</m>.
    </p>
  </statement>
  <blocks>
  <block order="2">
  <p>
    Suppose <m>n</m> is even.
  </p>
  </block>
  <block order="3">
  <choice>
  <p>
    Then <m>n</m> is a prime number.
  </p>
  </choice>
  <choice correct="yes">
  <p>
    Then there exists an <m>m</m> so that <m>n = 2m</m>.
  </p>
  </choice>
  <choice>
  <p>
    Then there exists an <m>m</m> so that <m>n = 2m + 1</m>.
  </p>
  </choice>
  </block>
  <block order="1" correct="no">
  <p>
    Click the heels of your ruby slippers together three times.
  </p>
  </block>
  <block order="5">
  <p>
    So <m>n = 2m + 0</m>.
  </p>
  <p>
    This is a superfluous second paragraph in this block.
  </p>
  </block>
  <block order="4">
  <p>
    Thus <m>n\equiv 0\mod 2</m>.
  </p>
  </block>
  <block order="6" correct="no">
  <p>
    And a little bit of irrelevant multi-line math
    <md>
      <mrow>c^2&amp;a^2+b^2</mrow>
      <mrow>&amp;x^2+y^2</mrow>
    </md>.
  </p>
  </block>
  </blocks>
  <hint>
    <p>
      Dorothy will not be much help with this proof.
    </p>
  </hint>
</exercise>
Create a proof of the theorem: If \(n\) is an even number, then \(n\equiv 0\mod 2\text{.}\)
Hint.
View Source for hint
<hint>
  <p>
    Dorothy will not be much help with this proof.
  </p>
</hint>
Dorothy will not be much help with this proof.