<section>
<title>Some Advanced Ideas</title>
<p>
<idx xml:id="index-finish-multicolumn" start="index-start-multicolumn" />The multi-row displayed mathematics in the proof of the Fundamental Theorem had equations aligned on the equals signs via the &
character.
Sometimes you don't want that.
Here is an example with some differential equations,
with each equation centered and unnumbered,
<md>
<mrow>{\mathcal L}(y')(s) = s {\mathcal L}(y)(s) - y(0) = s Y(s) - y(0)</mrow>
<mrow>{\mathcal L}(y'')(s) = s^2 {\mathcal L}(y)(s) - sy(0) - y'(0)= s^2 Y(s) - sy(0) - y'(0)</mrow>
</md>.
<notation>
<usage><m>\rho</m></usage>
<description>this symbol could be used for lots of things, but we are just trying to make a super-long description to get it to wrap within the column where it belongs, which is sometimes set to a fixed width to accomodate really complicated explanations</description>
</notation>
<idx>rho, a test</idx>
Just prior to this sentence, in the middle of this paragraph, is an <tag>idx</tag> and a <tag>notation</tag>, adjacent, but separated by some whitespace in the authored source.
That insignificant whitespace will be removed akways,
which will be a (slightly) noticeable improvement in the <latex /> output.
We test referencing notation here,
placed <em>before</em> the sentence-ending period and right after some inline mathematics<mdash />for <m>\mathbb{Z}_n</m>
<notation>
<usage><m>\mathbb{Z}_n</m></usage>
<description>(ring of) integers modulo <m>n</m></description>
</notation>
.
</p>
<p>
<latex /> has a device where you can interrupt a sequence of equations with a small amout of text and preserve the equation alignment on either side.
Here are two tests of that device,
with aligned equations and non-aligned equations.
Study the source to see use and differences.
(The math does not make sense.)
</p>
<p>
Aligned and numbered first.
<mdn>
<mrow>{\mathcal L}(y')(s) &= s {\mathcal L}(y)(s) - y(0) = s Y(s) - y(0)</mrow>
<mrow>{\mathcal L}(y'')(s) &= s^2 {\mathcal L}(y)(s) - sy(0) - y'(0)= s^2 Y(s) - sy(0) - y'(0).</mrow>
<intertext>And so it follows that,</intertext>
<mrow>{\mathcal L}(y')(s)^{++} &= s {\mathcal L}(y)(s) - y(0) = s Y(s) - y(0)</mrow>
<mrow>{\mathcal L}(y'')(s)^{5} &= s^2 {\mathcal L}(y)(s) - sy(0) - y'(0)= s^2 Y(s) - sy(0) - y'(0)</mrow>
</mdn>.
</p>
<p>
Now with no numbers and no alignment.
We include two cross-references in the <c>intertext</c> portion for testing.
<md>
<mrow>{\mathcal L}(y')(s) = s {\mathcal L}(y)(s) - y(0) = s Y(s) - y(0)</mrow>
<mrow>{\mathcal L}(y'')(s) = s^2 {\mathcal L}(y)(s) - sy(0) - y'(0)= s^2 Y(s) - sy(0) - y'(0).</mrow>
<intertext>First an external reference to <url href="http://example.com" visual="example.com" /> and internal cross-reference to <xref ref="corollary-FTC-derivative" text="type-global" />. And so it follows that,</intertext>
<mrow>{\mathcal L}(y')(s)^{++} = s {\mathcal L}(y)(s) - y(0) = s Y(s) - y(0)</mrow>
<mrow>{\mathcal L}(y'')(s)^{5} = s^2 {\mathcal L}(y)(s) - sy(0) - y'(0)= s^2 Y(s) - sy(0) - y'(0)</mrow>
</md>.
</p>
<p>
Tables can get quite complex.
Simple ones are simpler,
such as this example of numerical computations for Euler's method in just a bit.
</p>
<p>
But first we make a figure with two very simple tables next to each other.
This causes the very first instance of <tag>table</tag> to actually be a
<q>subtable</q>, which exposes a bug provoked by Emiliano Vega and fixed around 2020-08-06. (So we have to place this early to create the same behavior that exposed the bug.)
</p>
<figure>
<caption>Buggy sub-tables</caption>
<sidebyside>
<table>
<title>First</title>
<tabular>
<row>
<cell>One</cell>
</row>
</tabular>
</table>
<table>
<title>Second</title>
<tabular>
<row>
<cell>Two</cell>
</row>
</tabular>
</table>
</sidebyside>
</figure>
<table xml:id="table-euler1">
<title>Euler's approximation for Duffing's Equation with <m>h = 0.2</m></title>
<tabular top="major" halign="center">
<row bottom="minor">
<cell><m>i</m></cell>
<cell><m>t_i</m></cell>
<cell><m>x_i</m></cell>
<cell><m>y_i</m></cell>
</row>
<row>
<cell>0</cell>
<cell>0.00</cell>
<cell>0.0000</cell>
<cell>0.5000</cell>
</row>
<row>
<cell>1</cell>
<cell>0.20</cell>
<cell>0.1000</cell>
<cell>0.4800</cell>
</row>
<row>
<cell>2</cell>
<cell>0.40</cell>
<cell>0.1960</cell>
<cell>0.4560</cell>
</row>
<row>
<cell>3</cell>
<cell>0.60</cell>
<cell>0.2872</cell>
<cell>0.4295</cell>
</row>
<row>
<cell>4</cell>
<cell>0.80</cell>
<cell>0.3731</cell>
<cell>0.4027</cell>
</row>
<row>
<cell>5</cell>
<cell>1.00</cell>
<cell>0.4536</cell>
<cell>0.3783</cell>
</row>
<row>
<cell>6</cell>
<cell>1.20</cell>
<cell>0.5293</cell>
<cell>0.3591</cell>
</row>
<row>
<cell>7</cell>
<cell>1.40</cell>
<cell>0.6011</cell>
<cell>0.3480</cell>
</row>
<row>
<cell>8</cell>
<cell>1.60</cell>
<cell>0.6707</cell>
<cell>0.3474</cell>
</row>
<row>
<cell>9</cell>
<cell>1.80</cell>
<cell>0.7402</cell>
<cell>0.3603</cell>
</row>
<row bottom="medium">
<cell>10</cell>
<cell>2.00</cell>
<cell>0.8123</cell>
<cell>0.3900</cell>
</row>
</tabular>
</table>
</section>
Section 6 Some Advanced Ideas
View Source for section
The multi-row displayed mathematics in the proof of the Fundamental Theorem had equations aligned on the equals signs via the & character. Sometimes you don’t want that. Here is an example with some differential equations, with each equation centered and unnumbered,
\begin{gather*}
{\mathcal L}(y')(s) = s {\mathcal L}(y)(s) - y(0) = s Y(s) - y(0)\\
{\mathcal L}(y'')(s) = s^2 {\mathcal L}(y)(s) - sy(0) - y'(0)= s^2 Y(s) - sy(0) - y'(0)\text{.}
\end{gather*}
Just prior to this sentence, in the middle of this paragraph, is an
<idx>
and a <notation>
, adjacent, but separated by some whitespace in the authored source. That insignificant whitespace will be removed akways, which will be a (slightly) noticeable improvement in the LaTeX output. We test referencing notation here, placed before the sentence-ending period and right after some inline mathematics—for \(\mathbb{Z}_n\) .
LaTeX has a device where you can interrupt a sequence of equations with a small amout of text and preserve the equation alignment on either side. Here are two tests of that device, with aligned equations and non-aligned equations. Study the source to see use and differences. (The math does not make sense.)
Aligned and numbered first.
\begin{align}
{\mathcal L}(y')(s) &= s {\mathcal L}(y)(s) - y(0) = s Y(s) - y(0)\tag{6.1}\\
{\mathcal L}(y'')(s) &= s^2 {\mathcal L}(y)(s) - sy(0) - y'(0)= s^2 Y(s) - sy(0) - y'(0).\tag{6.2}\\
\end{align}
And so it follows that,
\begin{align}
{\mathcal L}(y')(s)^{++} &= s {\mathcal L}(y)(s) - y(0) = s Y(s) - y(0)\tag{6.3}\\
{\mathcal L}(y'')(s)^{5} &= s^2 {\mathcal L}(y)(s) - sy(0) - y'(0)= s^2 Y(s) - sy(0) - y'(0)\text{.}\tag{6.4}
\end{align}
Now with no numbers and no alignment. We include two cross-references in the
intertext
portion for testing.
\begin{gather*}
{\mathcal L}(y')(s) = s {\mathcal L}(y)(s) - y(0) = s Y(s) - y(0)\\
{\mathcal L}(y'')(s) = s^2 {\mathcal L}(y)(s) - sy(0) - y'(0)= s^2 Y(s) - sy(0) - y'(0).\\
\end{gather*}
First an external reference to
\begin{gather*}
{\mathcal L}(y')(s)^{++} = s {\mathcal L}(y)(s) - y(0) = s Y(s) - y(0)\\
{\mathcal L}(y'')(s)^{5} = s^2 {\mathcal L}(y)(s) - sy(0) - y'(0)= s^2 Y(s) - sy(0) - y'(0)\text{.}
\end{gather*}
example.com
and internal cross-reference to Corollary 4.1. And so it follows that,Tables can get quite complex. Simple ones are simpler, such as this example of numerical computations for Euler’s method in just a bit.
But first we make a figure with two very simple tables next to each other. This causes the very first instance of
<table>
to actually be a “subtable”, which exposes a bug provoked by Emiliano Vega and fixed around 2020-08-06. (So we have to place this early to create the same behavior that exposed the bug.)View Source for figure
<figure>
<caption>Buggy sub-tables</caption>
<sidebyside>
<table>
<title>First</title>
<tabular>
<row>
<cell>One</cell>
</row>
</tabular>
</table>
<table>
<title>Second</title>
<tabular>
<row>
<cell>Two</cell>
</row>
</tabular>
</table>
</sidebyside>
</figure>
View Source for table
<table>
<title>First</title>
<tabular>
<row>
<cell>One</cell>
</row>
</tabular>
</table>
One |
View Source for table
<table>
<title>Second</title>
<tabular>
<row>
<cell>Two</cell>
</row>
</tabular>
</table>
Two |
View Source for table
<table xml:id="table-euler1">
<title>Euler's approximation for Duffing's Equation with <m>h = 0.2</m></title>
<tabular top="major" halign="center">
<row bottom="minor">
<cell><m>i</m></cell>
<cell><m>t_i</m></cell>
<cell><m>x_i</m></cell>
<cell><m>y_i</m></cell>
</row>
<row>
<cell>0</cell>
<cell>0.00</cell>
<cell>0.0000</cell>
<cell>0.5000</cell>
</row>
<row>
<cell>1</cell>
<cell>0.20</cell>
<cell>0.1000</cell>
<cell>0.4800</cell>
</row>
<row>
<cell>2</cell>
<cell>0.40</cell>
<cell>0.1960</cell>
<cell>0.4560</cell>
</row>
<row>
<cell>3</cell>
<cell>0.60</cell>
<cell>0.2872</cell>
<cell>0.4295</cell>
</row>
<row>
<cell>4</cell>
<cell>0.80</cell>
<cell>0.3731</cell>
<cell>0.4027</cell>
</row>
<row>
<cell>5</cell>
<cell>1.00</cell>
<cell>0.4536</cell>
<cell>0.3783</cell>
</row>
<row>
<cell>6</cell>
<cell>1.20</cell>
<cell>0.5293</cell>
<cell>0.3591</cell>
</row>
<row>
<cell>7</cell>
<cell>1.40</cell>
<cell>0.6011</cell>
<cell>0.3480</cell>
</row>
<row>
<cell>8</cell>
<cell>1.60</cell>
<cell>0.6707</cell>
<cell>0.3474</cell>
</row>
<row>
<cell>9</cell>
<cell>1.80</cell>
<cell>0.7402</cell>
<cell>0.3603</cell>
</row>
<row bottom="medium">
<cell>10</cell>
<cell>2.00</cell>
<cell>0.8123</cell>
<cell>0.3900</cell>
</row>
</tabular>
</table>
\(i\) | \(t_i\) | \(x_i\) | \(y_i\) |
0 | 0.00 | 0.0000 | 0.5000 |
1 | 0.20 | 0.1000 | 0.4800 |
2 | 0.40 | 0.1960 | 0.4560 |
3 | 0.60 | 0.2872 | 0.4295 |
4 | 0.80 | 0.3731 | 0.4027 |
5 | 1.00 | 0.4536 | 0.3783 |
6 | 1.20 | 0.5293 | 0.3591 |
7 | 1.40 | 0.6011 | 0.3480 |
8 | 1.60 | 0.6707 | 0.3474 |
9 | 1.80 | 0.7402 | 0.3603 |
10 | 2.00 | 0.8123 | 0.3900 |