<section xml:id="section-dynamic-exercises">
<title>Dynamic Exercises</title>
<introduction>
<p>
This section demonstrates the use of dynamic randomized exercises built upon the framework of Runestone components.
These demonstration problems incorporate a library supporting mathematical expressions both for varying the content of the statement of the exercises as well as the checking of submitted answers.
</p>
</introduction>
<exercises>
<title>Dynamic Fill-In</title>
<introduction>
<p>
The first problem illustrates revised markup for fill-in problems that don't involve randomization and use simple string and number comparison tests.
Later exercises illustrate the use of dynamically generated mathematical expressions.
</p>
</introduction>
<exercise label="fillin-string-integer-new">
<title>Fill-In, String and Number Answers</title>
<statement>
<p>
Complete the following line of a Python program so that it will declare an integer variable <c>age</c> with an initial value of <c>5</c>.
</p>
<p>
<fillin mode="string" answer="int" /> <c>age = </c> <fillin mode="number" answer="5" /><c>;</c>
</p>
</statement>
<evaluation>
<evaluate>
<test>
<strcmp use-answer="yes" />
<feedback>
<p>
A variable of type <c>int</c> is appropriate for whole number ages.
</p>
</feedback>
</test>
<test>
<strcmp>.*</strcmp>
<feedback>
<p>
Remember that Java uses just the first three letters of the word
<q>integer</q>
to define an integral type.
</p>
</feedback>
</test>
</evaluate>
<evaluate>
<test>
<numcmp use-answer="yes" />
<feedback>
<p>
An integer variable may be initialized to a value.
</p>
</feedback>
</test>
<test>
<strcmp>.*</strcmp>
<feedback>
<p>
Use <c>5</c> as the initial value of the variable.
</p>
</feedback>
</test>
</evaluate>
</evaluation>
</exercise>
<exercise label="dynamic-fitb-simple-formula">
<title>Fill-In Formula (Dynamic)</title>
<statement>
<p>
Find a formula for a cubic function <m>f(x)</m> that roots at <m>x=<eval obj="x1" /></m>,
<m>x=<eval obj="x2" /></m>,
and <m>x=<eval obj="x3" /></m> and so that <m>f(0)=<eval obj="y0" /></m>.
</p>
<p>
<m>f(x)=</m> <fillin name="st_cubic" mode="math" ansobj="cubic" />
</p>
</statement>
<solution>
<p>
Knowing the roots of a polynomial allows us to write down the formula of <m>f(x)</m> in factored form,
<me>
f(x) = A <eval obj="base_cubic" />
</me>
with an unknown scaling multiple <m>A</m>.
</p>
<p>
When we evaluate <m>f(x)</m> at <m>x=0</m> using this formula, we find
<me>
f(0) = <eval obj="base_yint" />A
</me>.
Since we also know <m>f(0)=<eval obj="y0" /></m>,
we can write down the equation
<me>
A <eval obj="base_cubic" /> = <eval obj="y0" />
</me>
and find that <m>A=<eval obj="A" /></m>.
</p>
<p>
Consequently, we can write our function in the form
<me>
f(x)=<eval obj="cubic" />
</me>.
</p>
</solution>
<setup seed="314159">
<de-object name="y0" context="number">
<de-random distribution="discrete" min="-8" max="8" by="1" nonzero="yes" />
</de-object>
<de-object name="x1" context="number">
<de-random distribution="discrete" min="-8" max="-4" by="1" />
</de-object>
<de-object name="d1" context="number">
<de-random distribution="discrete" min="1" max="4" by="1" />
</de-object>
<de-object name="d2" context="number">
<de-random distribution="discrete" min="1" max="4" by="1" />
</de-object>
<de-object name="x2" context="number">
<de-number>x1+d1</de-number>
</de-object>
<de-object name="x3" context="number">
<de-number>x2+d2</de-number>
</de-object>
<de-object name="base_cubic" context="formula">
<de-expression reduce="yes">(x-x1)*(x-x2)*(x-x3)</de-expression>
</de-object>
<de-object name="base_yint" context="number">
<de-evaluate>
<formula><eval obj="base_cubic" /></formula>
<variable name="x">0</variable>
</de-evaluate>
</de-object>
<de-object name="A" context="number">
<de-number reduce="yes">y0/base_yint</de-number>
</de-object>
<de-object name="cubic" context="formula">
<de-expression reduce="yes">A*(x-x1)*(x-x2)*(x-x3)</de-expression>
</de-object>
</setup>
<evaluation>
<evaluate name="st_cubic">
<test correct="yes">
<mathcmp obj="cubic" />
</test>
</evaluate>
</evaluation>
</exercise>
<exercise label="function-decomposition">
<title>Decompose the Function</title>
<statement>
<p>
Consider the function
<me>
h(x)=<eval obj="composition" />
</me>.
Find two nontrivial functions <m>f(x)</m> and <m>g(x)</m> so that <m>h(x) = f(g(x))</m>.
</p>
<p>
<m>f(x) = </m> <fillin width="15" mode="math" ansobj="outerFormula" name="fGiven" /> and <m>g(x)=</m> <fillin width="15" mode="math" ansobj="innerFormula" name="gGiven" />
</p>
</statement>
<solution>
<p>
Noticing that the expression <m><eval obj="innerFormula" /></m> appears inside parentheses with a power,
it makes sense to think of that as the inner function,
defining <m>g(x) = <eval obj="innerFormula" /></m>.
The outer function describes what happens to that.
If we imagined replacing the formula <m><eval obj="innerFormula" /></m> with a box and then call that box our variable <m>x</m>,
we find the outer function is given by <m>f(x) = <eval obj="outerFormula" /></m>.
</p>
<p>
This is not the only non-trivial composition.
Can you find others?
</p>
</solution>
<setup seed="4321">
<de-object name="a" context="number">
<de-random distribution="discrete" min="-4" max="5" by="1" nonzero="yes" />
</de-object>
<de-object name="n" context="number">
<de-random distribution="discrete" min="2" max="5" />
</de-object>
<de-object name="b" context="number">
<de-random distribution="discrete" min="-10" max="10" by="1" nonzero="yes" />
</de-object>
<de-object name="c" context="number">
<de-random distribution="discrete" min="-4" max="5" by="1" nonzero="yes" />
</de-object>
<de-object name="d" context="number">
<de-random distribution="discrete" min="-10" max="10" by="1" nonzero="yes" />
</de-object>
<de-object name="outerFormula" context="formula">
<de-expression>a*x^n+b</de-expression>
</de-object>
<de-object name="innerFormula" context="formula">
<de-expression>c*x+d</de-expression>
</de-object>
<de-object name="identityFunction" context="formula">
<de-expression>x</de-expression>
</de-object>
<de-object name="composition" context="formula">
<de-expression mode="substitution" reduce="yes">
<formula><eval obj="outerFormula" /></formula>
<variable name="x"><eval obj="innerFormula" /></variable>
</de-expression>
</de-object>
</setup>
<evaluation answers-coupled="yes">
<evaluate name="fGiven">
<test>
<mathcmp obj="identityFunction" />
<feedback>
<p>
<m>f(x)=x</m> is not allowed for nontrivial compositions.
</p>
</feedback>
</test>
<test>
<logic op="and">
<logic op="not">
<mathcmp>
<eval obj="composition" />
<de-expression context="formula" mode="substitution">
<formula><eval obj="fGiven" /></formula>
<variable name="x"><eval obj="gGiven" /></variable>
</de-expression>
</mathcmp>
</logic>
<mathcmp>
<eval obj="composition" />
<de-expression context="formula" mode="substitution">
<formula><eval obj="gGiven" /></formula>
<variable name="x"><eval obj="fGiven" /></variable>
</de-expression>
</mathcmp>
</logic>
<feedback>
<p>
You have composed in the wrong order.
</p>
</feedback>
</test>
</evaluate>
<evaluate name="gGiven">
<test>
<mathcmp obj="identityFunction" />
<feedback>
<p>
<m>g(x)=x</m> is not allowed for nontrivial compositions.
</p>
</feedback>
</test>
</evaluate>
<evaluate all="yes">
<test correct="yes">
<logic op="and">
<mathcmp>
<eval obj="composition" />
<de-expression context="formula" mode="substitution">
<formula><eval obj="fGiven" /></formula>
<variable name="x"><eval obj="gGiven" /></variable>
</de-expression>
</mathcmp>
<logic op="not">
<mathcmp>
<eval obj="fGiven" />
<eval obj="identityFunction" />
</mathcmp>
</logic>
<logic op="not">
<mathcmp>
<eval obj="gGiven" />
<eval obj="identityFunction" />
</mathcmp>
</logic>
</logic>
</test>
</evaluate>
</evaluation>
</exercise>
</exercises>
</section>
Section 17 Dynamic Exercises
View Source for section
This section demonstrates the use of dynamic randomized exercises built upon the framework of Runestone components. These demonstration problems incorporate a library supporting mathematical expressions both for varying the content of the statement of the exercises as well as the checking of submitted answers.
Exercises Dynamic Fill-In
View Source for exercises
<exercises>
<title>Dynamic Fill-In</title>
<introduction>
<p>
The first problem illustrates revised markup for fill-in problems that don't involve randomization and use simple string and number comparison tests.
Later exercises illustrate the use of dynamically generated mathematical expressions.
</p>
</introduction>
<exercise label="fillin-string-integer-new">
<title>Fill-In, String and Number Answers</title>
<statement>
<p>
Complete the following line of a Python program so that it will declare an integer variable <c>age</c> with an initial value of <c>5</c>.
</p>
<p>
<fillin mode="string" answer="int" /> <c>age = </c> <fillin mode="number" answer="5" /><c>;</c>
</p>
</statement>
<evaluation>
<evaluate>
<test>
<strcmp use-answer="yes" />
<feedback>
<p>
A variable of type <c>int</c> is appropriate for whole number ages.
</p>
</feedback>
</test>
<test>
<strcmp>.*</strcmp>
<feedback>
<p>
Remember that Java uses just the first three letters of the word
<q>integer</q>
to define an integral type.
</p>
</feedback>
</test>
</evaluate>
<evaluate>
<test>
<numcmp use-answer="yes" />
<feedback>
<p>
An integer variable may be initialized to a value.
</p>
</feedback>
</test>
<test>
<strcmp>.*</strcmp>
<feedback>
<p>
Use <c>5</c> as the initial value of the variable.
</p>
</feedback>
</test>
</evaluate>
</evaluation>
</exercise>
<exercise label="dynamic-fitb-simple-formula">
<title>Fill-In Formula (Dynamic)</title>
<statement>
<p>
Find a formula for a cubic function <m>f(x)</m> that roots at <m>x=<eval obj="x1" /></m>,
<m>x=<eval obj="x2" /></m>,
and <m>x=<eval obj="x3" /></m> and so that <m>f(0)=<eval obj="y0" /></m>.
</p>
<p>
<m>f(x)=</m> <fillin name="st_cubic" mode="math" ansobj="cubic" />
</p>
</statement>
<solution>
<p>
Knowing the roots of a polynomial allows us to write down the formula of <m>f(x)</m> in factored form,
<me>
f(x) = A <eval obj="base_cubic" />
</me>
with an unknown scaling multiple <m>A</m>.
</p>
<p>
When we evaluate <m>f(x)</m> at <m>x=0</m> using this formula, we find
<me>
f(0) = <eval obj="base_yint" />A
</me>.
Since we also know <m>f(0)=<eval obj="y0" /></m>,
we can write down the equation
<me>
A <eval obj="base_cubic" /> = <eval obj="y0" />
</me>
and find that <m>A=<eval obj="A" /></m>.
</p>
<p>
Consequently, we can write our function in the form
<me>
f(x)=<eval obj="cubic" />
</me>.
</p>
</solution>
<setup seed="314159">
<de-object name="y0" context="number">
<de-random distribution="discrete" min="-8" max="8" by="1" nonzero="yes" />
</de-object>
<de-object name="x1" context="number">
<de-random distribution="discrete" min="-8" max="-4" by="1" />
</de-object>
<de-object name="d1" context="number">
<de-random distribution="discrete" min="1" max="4" by="1" />
</de-object>
<de-object name="d2" context="number">
<de-random distribution="discrete" min="1" max="4" by="1" />
</de-object>
<de-object name="x2" context="number">
<de-number>x1+d1</de-number>
</de-object>
<de-object name="x3" context="number">
<de-number>x2+d2</de-number>
</de-object>
<de-object name="base_cubic" context="formula">
<de-expression reduce="yes">(x-x1)*(x-x2)*(x-x3)</de-expression>
</de-object>
<de-object name="base_yint" context="number">
<de-evaluate>
<formula><eval obj="base_cubic" /></formula>
<variable name="x">0</variable>
</de-evaluate>
</de-object>
<de-object name="A" context="number">
<de-number reduce="yes">y0/base_yint</de-number>
</de-object>
<de-object name="cubic" context="formula">
<de-expression reduce="yes">A*(x-x1)*(x-x2)*(x-x3)</de-expression>
</de-object>
</setup>
<evaluation>
<evaluate name="st_cubic">
<test correct="yes">
<mathcmp obj="cubic" />
</test>
</evaluate>
</evaluation>
</exercise>
<exercise label="function-decomposition">
<title>Decompose the Function</title>
<statement>
<p>
Consider the function
<me>
h(x)=<eval obj="composition" />
</me>.
Find two nontrivial functions <m>f(x)</m> and <m>g(x)</m> so that <m>h(x) = f(g(x))</m>.
</p>
<p>
<m>f(x) = </m> <fillin width="15" mode="math" ansobj="outerFormula" name="fGiven" /> and <m>g(x)=</m> <fillin width="15" mode="math" ansobj="innerFormula" name="gGiven" />
</p>
</statement>
<solution>
<p>
Noticing that the expression <m><eval obj="innerFormula" /></m> appears inside parentheses with a power,
it makes sense to think of that as the inner function,
defining <m>g(x) = <eval obj="innerFormula" /></m>.
The outer function describes what happens to that.
If we imagined replacing the formula <m><eval obj="innerFormula" /></m> with a box and then call that box our variable <m>x</m>,
we find the outer function is given by <m>f(x) = <eval obj="outerFormula" /></m>.
</p>
<p>
This is not the only non-trivial composition.
Can you find others?
</p>
</solution>
<setup seed="4321">
<de-object name="a" context="number">
<de-random distribution="discrete" min="-4" max="5" by="1" nonzero="yes" />
</de-object>
<de-object name="n" context="number">
<de-random distribution="discrete" min="2" max="5" />
</de-object>
<de-object name="b" context="number">
<de-random distribution="discrete" min="-10" max="10" by="1" nonzero="yes" />
</de-object>
<de-object name="c" context="number">
<de-random distribution="discrete" min="-4" max="5" by="1" nonzero="yes" />
</de-object>
<de-object name="d" context="number">
<de-random distribution="discrete" min="-10" max="10" by="1" nonzero="yes" />
</de-object>
<de-object name="outerFormula" context="formula">
<de-expression>a*x^n+b</de-expression>
</de-object>
<de-object name="innerFormula" context="formula">
<de-expression>c*x+d</de-expression>
</de-object>
<de-object name="identityFunction" context="formula">
<de-expression>x</de-expression>
</de-object>
<de-object name="composition" context="formula">
<de-expression mode="substitution" reduce="yes">
<formula><eval obj="outerFormula" /></formula>
<variable name="x"><eval obj="innerFormula" /></variable>
</de-expression>
</de-object>
</setup>
<evaluation answers-coupled="yes">
<evaluate name="fGiven">
<test>
<mathcmp obj="identityFunction" />
<feedback>
<p>
<m>f(x)=x</m> is not allowed for nontrivial compositions.
</p>
</feedback>
</test>
<test>
<logic op="and">
<logic op="not">
<mathcmp>
<eval obj="composition" />
<de-expression context="formula" mode="substitution">
<formula><eval obj="fGiven" /></formula>
<variable name="x"><eval obj="gGiven" /></variable>
</de-expression>
</mathcmp>
</logic>
<mathcmp>
<eval obj="composition" />
<de-expression context="formula" mode="substitution">
<formula><eval obj="gGiven" /></formula>
<variable name="x"><eval obj="fGiven" /></variable>
</de-expression>
</mathcmp>
</logic>
<feedback>
<p>
You have composed in the wrong order.
</p>
</feedback>
</test>
</evaluate>
<evaluate name="gGiven">
<test>
<mathcmp obj="identityFunction" />
<feedback>
<p>
<m>g(x)=x</m> is not allowed for nontrivial compositions.
</p>
</feedback>
</test>
</evaluate>
<evaluate all="yes">
<test correct="yes">
<logic op="and">
<mathcmp>
<eval obj="composition" />
<de-expression context="formula" mode="substitution">
<formula><eval obj="fGiven" /></formula>
<variable name="x"><eval obj="gGiven" /></variable>
</de-expression>
</mathcmp>
<logic op="not">
<mathcmp>
<eval obj="fGiven" />
<eval obj="identityFunction" />
</mathcmp>
</logic>
<logic op="not">
<mathcmp>
<eval obj="gGiven" />
<eval obj="identityFunction" />
</mathcmp>
</logic>
</logic>
</test>
</evaluate>
</evaluation>
</exercise>
</exercises>
The first problem illustrates revised markup for fill-in problems that don’t involve randomization and use simple string and number comparison tests. Later exercises illustrate the use of dynamically generated mathematical expressions.
1. Fill-In, String and Number Answers.
View Source for exercise
<exercise label="fillin-string-integer-new">
<title>Fill-In, String and Number Answers</title>
<statement>
<p>
Complete the following line of a Python program so that it will declare an integer variable <c>age</c> with an initial value of <c>5</c>.
</p>
<p>
<fillin mode="string" answer="int" /> <c>age = </c> <fillin mode="number" answer="5" /><c>;</c>
</p>
</statement>
<evaluation>
<evaluate>
<test>
<strcmp use-answer="yes" />
<feedback>
<p>
A variable of type <c>int</c> is appropriate for whole number ages.
</p>
</feedback>
</test>
<test>
<strcmp>.*</strcmp>
<feedback>
<p>
Remember that Java uses just the first three letters of the word
<q>integer</q>
to define an integral type.
</p>
</feedback>
</test>
</evaluate>
<evaluate>
<test>
<numcmp use-answer="yes" />
<feedback>
<p>
An integer variable may be initialized to a value.
</p>
</feedback>
</test>
<test>
<strcmp>.*</strcmp>
<feedback>
<p>
Use <c>5</c> as the initial value of the variable.
</p>
</feedback>
</test>
</evaluate>
</evaluation>
</exercise>
2. Fill-In Formula (Dynamic).
View Source for exercise
<exercise label="dynamic-fitb-simple-formula">
<title>Fill-In Formula (Dynamic)</title>
<statement>
<p>
Find a formula for a cubic function <m>f(x)</m> that roots at <m>x=<eval obj="x1" /></m>,
<m>x=<eval obj="x2" /></m>,
and <m>x=<eval obj="x3" /></m> and so that <m>f(0)=<eval obj="y0" /></m>.
</p>
<p>
<m>f(x)=</m> <fillin name="st_cubic" mode="math" ansobj="cubic" />
</p>
</statement>
<solution>
<p>
Knowing the roots of a polynomial allows us to write down the formula of <m>f(x)</m> in factored form,
<me>
f(x) = A <eval obj="base_cubic" />
</me>
with an unknown scaling multiple <m>A</m>.
</p>
<p>
When we evaluate <m>f(x)</m> at <m>x=0</m> using this formula, we find
<me>
f(0) = <eval obj="base_yint" />A
</me>.
Since we also know <m>f(0)=<eval obj="y0" /></m>,
we can write down the equation
<me>
A <eval obj="base_cubic" /> = <eval obj="y0" />
</me>
and find that <m>A=<eval obj="A" /></m>.
</p>
<p>
Consequently, we can write our function in the form
<me>
f(x)=<eval obj="cubic" />
</me>.
</p>
</solution>
<setup seed="314159">
<de-object name="y0" context="number">
<de-random distribution="discrete" min="-8" max="8" by="1" nonzero="yes" />
</de-object>
<de-object name="x1" context="number">
<de-random distribution="discrete" min="-8" max="-4" by="1" />
</de-object>
<de-object name="d1" context="number">
<de-random distribution="discrete" min="1" max="4" by="1" />
</de-object>
<de-object name="d2" context="number">
<de-random distribution="discrete" min="1" max="4" by="1" />
</de-object>
<de-object name="x2" context="number">
<de-number>x1+d1</de-number>
</de-object>
<de-object name="x3" context="number">
<de-number>x2+d2</de-number>
</de-object>
<de-object name="base_cubic" context="formula">
<de-expression reduce="yes">(x-x1)*(x-x2)*(x-x3)</de-expression>
</de-object>
<de-object name="base_yint" context="number">
<de-evaluate>
<formula><eval obj="base_cubic" /></formula>
<variable name="x">0</variable>
</de-evaluate>
</de-object>
<de-object name="A" context="number">
<de-number reduce="yes">y0/base_yint</de-number>
</de-object>
<de-object name="cubic" context="formula">
<de-expression reduce="yes">A*(x-x1)*(x-x2)*(x-x3)</de-expression>
</de-object>
</setup>
<evaluation>
<evaluate name="st_cubic">
<test correct="yes">
<mathcmp obj="cubic" />
</test>
</evaluate>
</evaluation>
</exercise>
3. Decompose the Function.
View Source for exercise
<exercise label="function-decomposition">
<title>Decompose the Function</title>
<statement>
<p>
Consider the function
<me>
h(x)=<eval obj="composition" />
</me>.
Find two nontrivial functions <m>f(x)</m> and <m>g(x)</m> so that <m>h(x) = f(g(x))</m>.
</p>
<p>
<m>f(x) = </m> <fillin width="15" mode="math" ansobj="outerFormula" name="fGiven" /> and <m>g(x)=</m> <fillin width="15" mode="math" ansobj="innerFormula" name="gGiven" />
</p>
</statement>
<solution>
<p>
Noticing that the expression <m><eval obj="innerFormula" /></m> appears inside parentheses with a power,
it makes sense to think of that as the inner function,
defining <m>g(x) = <eval obj="innerFormula" /></m>.
The outer function describes what happens to that.
If we imagined replacing the formula <m><eval obj="innerFormula" /></m> with a box and then call that box our variable <m>x</m>,
we find the outer function is given by <m>f(x) = <eval obj="outerFormula" /></m>.
</p>
<p>
This is not the only non-trivial composition.
Can you find others?
</p>
</solution>
<setup seed="4321">
<de-object name="a" context="number">
<de-random distribution="discrete" min="-4" max="5" by="1" nonzero="yes" />
</de-object>
<de-object name="n" context="number">
<de-random distribution="discrete" min="2" max="5" />
</de-object>
<de-object name="b" context="number">
<de-random distribution="discrete" min="-10" max="10" by="1" nonzero="yes" />
</de-object>
<de-object name="c" context="number">
<de-random distribution="discrete" min="-4" max="5" by="1" nonzero="yes" />
</de-object>
<de-object name="d" context="number">
<de-random distribution="discrete" min="-10" max="10" by="1" nonzero="yes" />
</de-object>
<de-object name="outerFormula" context="formula">
<de-expression>a*x^n+b</de-expression>
</de-object>
<de-object name="innerFormula" context="formula">
<de-expression>c*x+d</de-expression>
</de-object>
<de-object name="identityFunction" context="formula">
<de-expression>x</de-expression>
</de-object>
<de-object name="composition" context="formula">
<de-expression mode="substitution" reduce="yes">
<formula><eval obj="outerFormula" /></formula>
<variable name="x"><eval obj="innerFormula" /></variable>
</de-expression>
</de-object>
</setup>
<evaluation answers-coupled="yes">
<evaluate name="fGiven">
<test>
<mathcmp obj="identityFunction" />
<feedback>
<p>
<m>f(x)=x</m> is not allowed for nontrivial compositions.
</p>
</feedback>
</test>
<test>
<logic op="and">
<logic op="not">
<mathcmp>
<eval obj="composition" />
<de-expression context="formula" mode="substitution">
<formula><eval obj="fGiven" /></formula>
<variable name="x"><eval obj="gGiven" /></variable>
</de-expression>
</mathcmp>
</logic>
<mathcmp>
<eval obj="composition" />
<de-expression context="formula" mode="substitution">
<formula><eval obj="gGiven" /></formula>
<variable name="x"><eval obj="fGiven" /></variable>
</de-expression>
</mathcmp>
</logic>
<feedback>
<p>
You have composed in the wrong order.
</p>
</feedback>
</test>
</evaluate>
<evaluate name="gGiven">
<test>
<mathcmp obj="identityFunction" />
<feedback>
<p>
<m>g(x)=x</m> is not allowed for nontrivial compositions.
</p>
</feedback>
</test>
</evaluate>
<evaluate all="yes">
<test correct="yes">
<logic op="and">
<mathcmp>
<eval obj="composition" />
<de-expression context="formula" mode="substitution">
<formula><eval obj="fGiven" /></formula>
<variable name="x"><eval obj="gGiven" /></variable>
</de-expression>
</mathcmp>
<logic op="not">
<mathcmp>
<eval obj="fGiven" />
<eval obj="identityFunction" />
</mathcmp>
</logic>
<logic op="not">
<mathcmp>
<eval obj="gGiven" />
<eval obj="identityFunction" />
</mathcmp>
</logic>
</logic>
</test>
</evaluate>
</evaluation>
</exercise>