Skip to main content\(\require{cancel}\require{extpfeil}\newcommand{\definiteintegral}[4]{\int_{#1}^{#2}\,#3\,d#4}
\newcommand{\myequation}[2]{#1\amp =#2}
\newcommand{\indefiniteintegral}[2]{\int#1\,d#2}
\newcommand{\testingescapedpercent}{ \% }
\newcommand{\bvec}{{\mathbf b}}
\newcommand{\vvec}{{\mathbf v}}
\newcommand{\class}[2][\sim]{\lbrack #2\rbrack_{#1}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
Handout 36.1 Derivative Rules
View Source for handout
<handout xml:id="handout-derivative-rules" label="handout-derivative-rules">
<title>Derivative Rules</title>
<page>
<paragraphs>
<title>Rules for specific types of functions</title>
<dl>
<li>
<title>Constant functions</title>
<p>
<m>(k)' = 0</m>
</p>
</li>
<li>
<title>Power functions</title>
<p>
<m>(x^{n})' = nx^{n-1}</m>
</p>
</li>
<li>
<title>Exponential functions</title>
<p>
<m>(a^{x})' = \ln(a) a^{x} \text{ (for } a>0\text{)}</m>
</p>
<p>
<m>(e^{x})' = e^{x}</m>
</p>
</li>
<li>
<title>Logarithmic functions</title>
<p>
<m>(\ln(x))' = \frac{1}{x}</m>
</p>
</li>
<li>
<title>Trigonometric functions</title>
<p>
<m>(\sin(x))' = \cos(x)</m>.
</p>
<p>
<m>(\cos(x))' = -\sin(x)</m>.
</p>
<p>
<m>(\tan(x))' = \sec^{2}(x) = \frac{1}{\cos^{2}(x)}</m>.
</p>
<p>
<m>(\arcsin(x))' = \frac{1}{\sqrt{1-x^{2}}}</m>.
</p>
<p>
<m>(\arctan(x))' = \frac{1}{1+x^{2}}</m>.
</p>
</li>
</dl>
</paragraphs>
<paragraphs>
<title>Rules for combinations of functions</title>
<dl>
<li>
<title>Constant multiples</title>
<p>
<m>(k\cdot f(x))' = k\cdot f'(x)</m>
</p>
</li>
<li>
<title>Sum and difference</title>
<p>
<m>(f(x) \pm g(x))' = f'(x) \pm g'(x)</m>
</p>
</li>
<li>
<title>Products (the product rule)</title>
<p>
<m>(f(x)\cdot g(x))' = f'(x)g(x) + f(x)g'(x)</m>
</p>
</li>
<li>
<title>Quotients (the quotient rule)</title>
<p>
<m>\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^{2}}</m>
</p>
</li>
<li>
<title>Compositions (the chain rule)</title>
<p>
<m>(f(g(x)))' = f'(g(x))\cdot g'(x)</m>
</p>
</li>
</dl>
</paragraphs>
</page>
</handout>
Rules for specific types of functions.
View Source for paragraphs
<paragraphs>
<title>Rules for specific types of functions</title>
<dl>
<li>
<title>Constant functions</title>
<p>
<m>(k)' = 0</m>
</p>
</li>
<li>
<title>Power functions</title>
<p>
<m>(x^{n})' = nx^{n-1}</m>
</p>
</li>
<li>
<title>Exponential functions</title>
<p>
<m>(a^{x})' = \ln(a) a^{x} \text{ (for } a>0\text{)}</m>
</p>
<p>
<m>(e^{x})' = e^{x}</m>
</p>
</li>
<li>
<title>Logarithmic functions</title>
<p>
<m>(\ln(x))' = \frac{1}{x}</m>
</p>
</li>
<li>
<title>Trigonometric functions</title>
<p>
<m>(\sin(x))' = \cos(x)</m>.
</p>
<p>
<m>(\cos(x))' = -\sin(x)</m>.
</p>
<p>
<m>(\tan(x))' = \sec^{2}(x) = \frac{1}{\cos^{2}(x)}</m>.
</p>
<p>
<m>(\arcsin(x))' = \frac{1}{\sqrt{1-x^{2}}}</m>.
</p>
<p>
<m>(\arctan(x))' = \frac{1}{1+x^{2}}</m>.
</p>
</li>
</dl>
</paragraphs>
- Constant functions
\(\displaystyle (k)' = 0\)
- Power functions
\(\displaystyle (x^{n})' = nx^{n-1}\)
- Exponential functions
-
\((a^{x})' = \ln(a) a^{x} \text{ (for } a>0\text{)}\)
- Logarithmic functions
\(\displaystyle (\ln(x))' = \frac{1}{x}\)
- Trigonometric functions
-
\((\sin(x))' = \cos(x)\text{.}\)
\((\cos(x))' = -\sin(x)\text{.}\)
\((\tan(x))' = \sec^{2}(x) = \frac{1}{\cos^{2}(x)}\text{.}\)
\((\arcsin(x))' = \frac{1}{\sqrt{1-x^{2}}}\text{.}\)
\((\arctan(x))' = \frac{1}{1+x^{2}}\text{.}\)
Rules for combinations of functions.
View Source for paragraphs
<paragraphs>
<title>Rules for combinations of functions</title>
<dl>
<li>
<title>Constant multiples</title>
<p>
<m>(k\cdot f(x))' = k\cdot f'(x)</m>
</p>
</li>
<li>
<title>Sum and difference</title>
<p>
<m>(f(x) \pm g(x))' = f'(x) \pm g'(x)</m>
</p>
</li>
<li>
<title>Products (the product rule)</title>
<p>
<m>(f(x)\cdot g(x))' = f'(x)g(x) + f(x)g'(x)</m>
</p>
</li>
<li>
<title>Quotients (the quotient rule)</title>
<p>
<m>\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^{2}}</m>
</p>
</li>
<li>
<title>Compositions (the chain rule)</title>
<p>
<m>(f(g(x)))' = f'(g(x))\cdot g'(x)</m>
</p>
</li>
</dl>
</paragraphs>
- Constant multiples
\(\displaystyle (k\cdot f(x))' = k\cdot f'(x)\)
- Sum and difference
\(\displaystyle (f(x) \pm g(x))' = f'(x) \pm g'(x)\)
- Products (the product rule)
\(\displaystyle (f(x)\cdot g(x))' = f'(x)g(x) + f(x)g'(x)\)
- Quotients (the quotient rule)
\(\displaystyle \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^{2}}\)
- Compositions (the chain rule)
\(\displaystyle (f(g(x)))' = f'(g(x))\cdot g'(x)\)