Skip to main content
Logo image

Worksheet 35.4 Dot products and projection

View Source for worksheet
<worksheet label="worksheet-dot-products" courseid="MAT-150" series="Activity" seriescode="13">
  <title>Dot products and projection</title>
  <page>
  <sidebyside width="45%" margins="0%">
    <exercise>
      <introduction>
        <p>
          Let <m>{\vec v}_1 = (-4,1)</m>,
          <m>{\vec v}_2 = (2,2)</m>,
          <m>{\vec v}_3 = (1,2,3)</m>, <m>{\vec v}_4 = (-2,1,0)</m>.
          Find the values of the following expressions:
        </p>
      </introduction>
      <task workspace="1in">
        <p>
          <m>{\vec v}_1 \cdot {\vec v}_2 = <fillin /></m>
        </p>
      </task>
      <task workspace="1.0in">
        <p>
          <m>{\vec v}_3 \cdot {\vec v}_4 = <fillin /></m>
        </p>
      </task>
      <task workspace="1in">
        <p>
          <m>\lVert{\vec v}_1\rVert = <fillin /></m>
        </p>
      </task>
      <task workspace="1in">
        <p>
          <m>\lVert{\vec v}_4\rVert = <fillin /></m>
        </p>
      </task>
      <task workspace="1in">
        <p>
          Are any of these vectors perpendicular to each other?
          <fillin />
        </p>
      </task>
    </exercise>
    <exercise workspace="3in">
      <statement>
        <p>
          The vectors <m>\vec a = (3,9)</m> and <m>\vec u = (4,2)</m> are pictured below.
          Derive the formula for projection on a line and use it to find the projection of <m>\vec a</m> on the line spanned by <m>\vec u</m>.
          Also compute the length of the residual vector.
        </p>
        <image width="100%" source="images/projection1.png">
          <shortdescription>two vectors in a Cartesian plane</shortdescription>
        </image>
      </statement>
    </exercise>
  </sidebyside>
  </page>
  <page>
  <sidebyside width="48%" margins="0%">
    <exercise workspace="1.25in">
      <introduction>
        <p>
          Consider the vector equation
          <me>
            m \begin{bmatrix}2 \\ 5\end{bmatrix} = \begin{bmatrix}3 \\ 7\end{bmatrix}
          </me>.
        </p>
      </introduction>
      <task>
        <p>
          Check that there is no solution <m>m</m> that makes the equation true.
        </p>
      </task>
      <task>
        <p>
          Use projection to find the best approximation <m>\hat m</m>.
        </p>
      </task>
      <task>
        <p>
          Compute <m>\hat m \begin{bmatrix}2 \\ 5\end{bmatrix} </m>.
        </p>
      </task>
      <task>
        <p>
          Compute the residual vector.
        </p>
      </task>
      <task>
        <p>
          Compute the length of the residual vector and explain what it means.
        </p>
      </task>
    </exercise>
    <exercise>
      <introduction>
        <p>
          Consider the system of equations
          <md>
            <mrow>3t \amp =5</mrow>
            <mrow>2t \amp = 9</mrow>
          </md>.
        </p>
      </introduction>
      <task workspace="2in">
        <p>
          Write the system in vector form.
        </p>
      </task>
      <task workspace="3.9in">
        <p>
          Find the best estimate, <m>\hat t</m>,
          of <m>t</m> using projection.
        </p>
      </task>
      <task workspace="2in">
        <p>
          Compute the length of the residual vector.
        </p>
      </task>
    </exercise>
  </sidebyside>
  </page>
</worksheet>

1.

View Source for exercise
<exercise>
  <introduction>
    <p>
      Let <m>{\vec v}_1 = (-4,1)</m>,
      <m>{\vec v}_2 = (2,2)</m>,
      <m>{\vec v}_3 = (1,2,3)</m>, <m>{\vec v}_4 = (-2,1,0)</m>.
      Find the values of the following expressions:
    </p>
  </introduction>
  <task workspace="1in">
    <p>
      <m>{\vec v}_1 \cdot {\vec v}_2 = <fillin /></m>
    </p>
  </task>
  <task workspace="1.0in">
    <p>
      <m>{\vec v}_3 \cdot {\vec v}_4 = <fillin /></m>
    </p>
  </task>
  <task workspace="1in">
    <p>
      <m>\lVert{\vec v}_1\rVert = <fillin /></m>
    </p>
  </task>
  <task workspace="1in">
    <p>
      <m>\lVert{\vec v}_4\rVert = <fillin /></m>
    </p>
  </task>
  <task workspace="1in">
    <p>
      Are any of these vectors perpendicular to each other?
      <fillin />
    </p>
  </task>
</exercise>
Let \({\vec v}_1 = (-4,1)\text{,}\) \({\vec v}_2 = (2,2)\text{,}\) \({\vec v}_3 = (1,2,3)\text{,}\) \({\vec v}_4 = (-2,1,0)\text{.}\) Find the values of the following expressions:
(a)
View Source for task
<task workspace="1in">
  <p>
    <m>{\vec v}_1 \cdot {\vec v}_2 = <fillin /></m>
  </p>
</task>
\({\vec v}_1 \cdot {\vec v}_2 = \fillinmath{XXX}\)
(b)
View Source for task
<task workspace="1.0in">
  <p>
    <m>{\vec v}_3 \cdot {\vec v}_4 = <fillin /></m>
  </p>
</task>
\({\vec v}_3 \cdot {\vec v}_4 = \fillinmath{XXX}\)
(c)
View Source for task
<task workspace="1in">
  <p>
    <m>\lVert{\vec v}_1\rVert = <fillin /></m>
  </p>
</task>
\(\lVert{\vec v}_1\rVert = \fillinmath{XXX}\)
(d)
View Source for task
<task workspace="1in">
  <p>
    <m>\lVert{\vec v}_4\rVert = <fillin /></m>
  </p>
</task>
\(\lVert{\vec v}_4\rVert = \fillinmath{XXX}\)
(e)
View Source for task
<task workspace="1in">
  <p>
    Are any of these vectors perpendicular to each other?
    <fillin />
  </p>
</task>
Are any of these vectors perpendicular to each other?

2.

View Source for exercise
<exercise workspace="3in">
  <statement>
    <p>
      The vectors <m>\vec a = (3,9)</m> and <m>\vec u = (4,2)</m> are pictured below.
      Derive the formula for projection on a line and use it to find the projection of <m>\vec a</m> on the line spanned by <m>\vec u</m>.
      Also compute the length of the residual vector.
    </p>
    <image width="100%" source="images/projection1.png">
      <shortdescription>two vectors in a Cartesian plane</shortdescription>
    </image>
  </statement>
</exercise>
The vectors \(\vec a = (3,9)\) and \(\vec u = (4,2)\) are pictured below. Derive the formula for projection on a line and use it to find the projection of \(\vec a\) on the line spanned by \(\vec u\text{.}\) Also compute the length of the residual vector.
two vectors in a Cartesian plane

3.

View Source for exercise
<exercise workspace="1.25in">
  <introduction>
    <p>
      Consider the vector equation
      <me>
        m \begin{bmatrix}2 \\ 5\end{bmatrix} = \begin{bmatrix}3 \\ 7\end{bmatrix}
      </me>.
    </p>
  </introduction>
  <task>
    <p>
      Check that there is no solution <m>m</m> that makes the equation true.
    </p>
  </task>
  <task>
    <p>
      Use projection to find the best approximation <m>\hat m</m>.
    </p>
  </task>
  <task>
    <p>
      Compute <m>\hat m \begin{bmatrix}2 \\ 5\end{bmatrix} </m>.
    </p>
  </task>
  <task>
    <p>
      Compute the residual vector.
    </p>
  </task>
  <task>
    <p>
      Compute the length of the residual vector and explain what it means.
    </p>
  </task>
</exercise>
Consider the vector equation
\begin{equation*} m \begin{bmatrix}2 \\ 5\end{bmatrix} = \begin{bmatrix}3 \\ 7\end{bmatrix}\text{.} \end{equation*}
(a)
View Source for task
<task>
  <p>
    Check that there is no solution <m>m</m> that makes the equation true.
  </p>
</task>
Check that there is no solution \(m\) that makes the equation true.
(b)
View Source for task
<task>
  <p>
    Use projection to find the best approximation <m>\hat m</m>.
  </p>
</task>
Use projection to find the best approximation \(\hat m\text{.}\)
(c)
View Source for task
<task>
  <p>
    Compute <m>\hat m \begin{bmatrix}2 \\ 5\end{bmatrix} </m>.
  </p>
</task>
Compute \(\hat m \begin{bmatrix}2 \\ 5\end{bmatrix} \text{.}\)
(d)
View Source for task
<task>
  <p>
    Compute the residual vector.
  </p>
</task>
Compute the residual vector.
(e)
View Source for task
<task>
  <p>
    Compute the length of the residual vector and explain what it means.
  </p>
</task>
Compute the length of the residual vector and explain what it means.

4.

View Source for exercise
<exercise>
  <introduction>
    <p>
      Consider the system of equations
      <md>
        <mrow>3t \amp =5</mrow>
        <mrow>2t \amp = 9</mrow>
      </md>.
    </p>
  </introduction>
  <task workspace="2in">
    <p>
      Write the system in vector form.
    </p>
  </task>
  <task workspace="3.9in">
    <p>
      Find the best estimate, <m>\hat t</m>,
      of <m>t</m> using projection.
    </p>
  </task>
  <task workspace="2in">
    <p>
      Compute the length of the residual vector.
    </p>
  </task>
</exercise>
Consider the system of equations
\begin{align*} 3t \amp =5\\ 2t \amp = 9\text{.} \end{align*}
(a)
View Source for task
<task workspace="2in">
  <p>
    Write the system in vector form.
  </p>
</task>
Write the system in vector form.
(b)
View Source for task
<task workspace="3.9in">
  <p>
    Find the best estimate, <m>\hat t</m>,
    of <m>t</m> using projection.
  </p>
</task>
Find the best estimate, \(\hat t\text{,}\) of \(t\) using projection.
(c)
View Source for task
<task workspace="2in">
  <p>
    Compute the length of the residual vector.
  </p>
</task>
Compute the length of the residual vector.